Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
基本信息
- 批准号:2201149
- 负责人:
- 金额:$ 20.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project concerns the structure of geometric objects that arise as solution sets of systems of polynomial equations in several variables. Such objects, called varieties, play a fundamental role throughout mathematics as well as in applications in science and engineering. Motivated by a question that originates with mathematician Henri Poincaré in 1891, the investigators will study the relationship between local properties of a variety and global features of tangents at points of the variety, as these points vary. They will also work on implicitization, a classical question in pure mathematics that is of much interest to scientists in geometric modelling and computer aided design. Given any geometric object, such as a curve or surface, the goal is to find the system of polynomial equations that has the geometric object as a solution set; knowing these 'implicit' equations provides insight into the geometric object. The PIs will involve graduate students and postdoctoral visitors in the project, and they will facilitate scientific exchange by organizing international programs, conferences, and national online seminars.The investigators will work on projects pertaining to algebraic vector fields, the implicitization problem for Rees rings, equisingularity theory, and residual intersections. The PIs will use tools from commutative algebra to investigate how the types of singularities and the global invariants of a variety are reflected in properties of the vector fields that are tangent to the variety. In particular, they wish to establish a correspondence between the types and constellation of the singularities of a projective plane curve on the one hand and the graded Betti numbers of the module of derivations of its homogeneous coordinate ring on the other. Determining the implicit equations defining the graph and image of a rational map between projective spaces is a classical problem in elimination theory. The PIs will concentrate on the case of Cremona maps, where the implicit equations of the graph also provide a parametrization of the inverse map. For dominant rational maps they will investigate the relationship between the projective degrees of the rational map and the number and bidegrees of the equations defining the graph. In equisingularity theory, one seeks fiberwise multiplicity-based criteria for a family of analytic spaces to be Whitney equisingular and hence topologically trivial. The PIs plan to devise such a criterion for analytic spaces with arbitrary singularities by using a new notion of multiplicity inspired by intersection theory. Graduate students will be supported as part of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目涉及几何对象的结构,这些几何对象是多个变量中多项式平衡系统的解决方案集。这种称为品种的物体在整个数学以及科学与工程中的应用中都起着基本作用。研究人员将于1891年以数学家亨利·波卡(HenriPoincaré)为动机,研究人员将研究各种位置上各种切线的当地属性与各种切线的全球特征之间的关系,因为这些观点各不相同。他们还将致力于含义,这是纯数学中的一个经典问题,这对科学家在几何建模和计算机辅助设计方面引起了人们的关注。给定任何几何对象(例如曲线或表面),目标是找到具有几何对象作为解决方案集的多项式方程式的系统;了解这些“隐式”方程提供了对几何对象的见解。 PI将参与该项目的研究生和博士后访问者,它们将通过组织国际计划,会议和国家在线半决赛来促进科学交流。研究人员将研究与代数矢量领域有关的项目,与代数矢量有关的项目,REES环,等价理论和残留分裂的含义。 PI将使用交通证代数中的工具来研究如何在与该品种相切的矢量场的属性中反映出多种多样的全局不变性的类型。特别是,他们希望一方面建立射影平面曲线的奇异性的类型和星座与另一只手的分级Betti数字在另一方面的衍生模块。确定定义射击空间之间有理图的图形和图像的隐式方程是消除理论中的经典问题。 PI将集中在Cremona Maps的情况下,其中图的隐式方程还提供了反映射的参数。对于主要的有理图,他们将研究有理图的投射程度与定义图形的股票的数字和二元格之间的关系。在等式理论中,一个人寻求基于光纤的基于多样性的标准,以使分析空间家族成为惠特尼同等的,因此在拓扑上是琐碎的。 PIS计划通过使用由相交理论启发的新多重性通知来设计具有任意奇点的分析空间的标准。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来表示支持的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernd Ulrich其他文献
Multidegrees, families, and integral dependence
多学位、家庭和整体依赖
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yairon Cid‐Ruiz;C. Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Tangent star cones.
相切星锥。
- DOI:
10.1515/crll.1997.483.23 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Wolmer V. Vasconcelos;Bernd Ulrich;Aron Simis - 通讯作者:
Aron Simis
Socle degrees, resolutions, and Frobenius powers
- DOI:
10.1016/j.jalgebra.2009.04.014 - 发表时间:
2009-07-01 - 期刊:
- 影响因子:
- 作者:
Andrew R. Kustin;Bernd Ulrich - 通讯作者:
Bernd Ulrich
The bi-graded structure of symmetric algebras with applications to Rees rings
- DOI:
10.1016/j.jalgebra.2016.08.014 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Andrew Kustin;Claudia Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Bernd Ulrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernd Ulrich', 18)}}的其他基金
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
- 批准号:
2317351 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra
交换代数中的隐式化、残差交点和微分方法
- 批准号:
1802383 - 财政年份:2018
- 资助金额:
$ 20.5万 - 项目类别:
Continuing Grant
Algebra and Geometry Meetings in the Midwest
中西部的代数和几何会议
- 批准号:
1446115 - 财政年份:2015
- 资助金额:
$ 20.5万 - 项目类别:
Continuing Grant
Problems in Commutative Algebra: Free Resolutions, Multiplicities, and Blowup Rings
交换代数问题:自由解析、重数和爆炸环
- 批准号:
1503605 - 财政年份:2015
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Commutative Algebra of Alternating Polynomials
交替多项式的交换代数
- 批准号:
0901367 - 财政年份:2009
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Multiplicity theory and related topics in commutative algebra
交换代数中的多重性理论及相关主题
- 批准号:
0901613 - 财政年份:2009
- 资助金额:
$ 20.5万 - 项目类别:
Continuing Grant
PASI: Commutative Algebra and its Connections to Geometry; Olinda, Brazil, Summer 2009
PASI:交换代数及其与几何的联系;
- 批准号:
0819049 - 财政年份:2009
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Special Algebra Meetings in the Midwest
中西部特别代数会议
- 批准号:
0753127 - 财政年份:2008
- 资助金额:
$ 20.5万 - 项目类别:
Continuing Grant
Cores, regularity and principal ideal theorems
核心、正则性和主要理想定理
- 批准号:
0501011 - 财政年份:2005
- 资助金额:
$ 20.5万 - 项目类别:
Continuing Grant
相似国自然基金
基于边界控制的网络化抛物型偏微分系统一致性研究
- 批准号:62303163
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分数阶微分引导的深度学习方法研究
- 批准号:62372359
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
流体力学和非线性弹性力学中偏微分方程解的正则性研究
- 批准号:12301141
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于微分拟变分不等式的电力-交通耦合网络动态定价机制研究
- 批准号:52307087
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317192 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317194 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
- 批准号:
2309779 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317193 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Continuing Grant