Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory

协作研究:以等奇性理论为视角的微分方法、隐式化和多重性

基本信息

  • 批准号:
    2201149
  • 负责人:
  • 金额:
    $ 20.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This research project concerns the structure of geometric objects that arise as solution sets of systems of polynomial equations in several variables. Such objects, called varieties, play a fundamental role throughout mathematics as well as in applications in science and engineering. Motivated by a question that originates with mathematician Henri Poincaré in 1891, the investigators will study the relationship between local properties of a variety and global features of tangents at points of the variety, as these points vary. They will also work on implicitization, a classical question in pure mathematics that is of much interest to scientists in geometric modelling and computer aided design. Given any geometric object, such as a curve or surface, the goal is to find the system of polynomial equations that has the geometric object as a solution set; knowing these 'implicit' equations provides insight into the geometric object. The PIs will involve graduate students and postdoctoral visitors in the project, and they will facilitate scientific exchange by organizing international programs, conferences, and national online seminars.The investigators will work on projects pertaining to algebraic vector fields, the implicitization problem for Rees rings, equisingularity theory, and residual intersections. The PIs will use tools from commutative algebra to investigate how the types of singularities and the global invariants of a variety are reflected in properties of the vector fields that are tangent to the variety. In particular, they wish to establish a correspondence between the types and constellation of the singularities of a projective plane curve on the one hand and the graded Betti numbers of the module of derivations of its homogeneous coordinate ring on the other. Determining the implicit equations defining the graph and image of a rational map between projective spaces is a classical problem in elimination theory. The PIs will concentrate on the case of Cremona maps, where the implicit equations of the graph also provide a parametrization of the inverse map. For dominant rational maps they will investigate the relationship between the projective degrees of the rational map and the number and bidegrees of the equations defining the graph. In equisingularity theory, one seeks fiberwise multiplicity-based criteria for a family of analytic spaces to be Whitney equisingular and hence topologically trivial. The PIs plan to devise such a criterion for analytic spaces with arbitrary singularities by using a new notion of multiplicity inspired by intersection theory. Graduate students will be supported as part of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究项目涉及在1891年与数学家亨利·庞加莱(HenriPoincaré)的问题相关的多项式方程的解决方案集合的结构对象。对科学建模和计算机很感兴趣。研讨会。研究人员与代数矢量场有关,REES环的无关,术理论和残留的相互作用。对于多种多样,他们希望在手上建立一个投射平面的类型和星座,并分级的贝蒂数字的均匀坐标环的模块。消除理论的经典问题。对于一个分析空间,惠特尼的奇异拓扑是通过使用新的ITY概念来设计出受相交理论的启发的新概念,以设计任意奇异的分析空间。 NSF's Fly Mission and est est home est home home toundation的知识分子优点和更广泛的影响标准值得通过评估获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernd Ulrich其他文献

Multidegrees, families, and integral dependence
多学位、家庭和整体依赖
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yairon Cid‐Ruiz;C. Polini;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
Tangent star cones.
相切星锥。

Bernd Ulrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernd Ulrich', 18)}}的其他基金

Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
  • 批准号:
    2317351
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra
交换代数中的隐式化、残差交点和微分方法
  • 批准号:
    1802383
  • 财政年份:
    2018
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Algebra and Geometry Meetings in the Midwest
中西部的代数和几何会议
  • 批准号:
    1446115
  • 财政年份:
    2015
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Problems in Commutative Algebra: Free Resolutions, Multiplicities, and Blowup Rings
交换代数问题:自由解析、重数和爆炸环
  • 批准号:
    1503605
  • 财政年份:
    2015
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
Rees algebras and singularities
里斯代数和奇点
  • 批准号:
    1205002
  • 财政年份:
    2012
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Commutative Algebra of Alternating Polynomials
交替多项式的交换代数
  • 批准号:
    0901367
  • 财政年份:
    2009
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
Multiplicity theory and related topics in commutative algebra
交换代数中的多重性理论及相关主题
  • 批准号:
    0901613
  • 财政年份:
    2009
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
PASI: Commutative Algebra and its Connections to Geometry; Olinda, Brazil, Summer 2009
PASI:交换代数及其与几何的联系;
  • 批准号:
    0819049
  • 财政年份:
    2009
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
Special Algebra Meetings in the Midwest
中西部特别代数会议
  • 批准号:
    0753127
  • 财政年份:
    2008
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Cores, regularity and principal ideal theorems
核心、正则性和主要理想定理
  • 批准号:
    0501011
  • 财政年份:
    2005
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于自适应笛卡尔网格-格子波尔兹曼方法和自动微分方法的高效非定常流动导数计算方法研究
  • 批准号:
    12302379
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于不连续控制策略的生物微分系统的动力学研究
  • 批准号:
    12361037
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
非全局Lipschitz条件下时滞随机微分方程数值方法的研究
  • 批准号:
    12301521
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
智能感知织物界面电阻耦合传感机制及负微分电阻效应研究
  • 批准号:
    62301290
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于微分几何理论的集群航天器容错博弈控制研究
  • 批准号:
    62303218
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
  • 批准号:
    10663605
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317192
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317194
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309779
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317193
  • 财政年份:
    2023
  • 资助金额:
    $ 20.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了