Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra

交换代数中的隐式化、残差交点和微分方法

基本信息

  • 批准号:
    1802383
  • 负责人:
  • 金额:
    $ 32.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

This award funds research in Commutative Algebra, the study of systems of polynomial equations in several unknowns. To this end, one considers the collection of all solutions of a system of equations as a geometric object and investigates the functions defined on this object. Reversing the perspective leads to the implicitization problem, which the investigator plans to work on: Given a geometric object, such as a curve or a surface, one wishes to construct a system of polynomial equations that has the geometric object as its solution set. Once the system of polynomial equations is known, it becomes much easier, for instance, to decide whether a specific point lies on the surface or whether the surface is smooth at one of its points. The implicitization problem is difficult and requires advanced techniques from pure mathematics, but its solution even in particular cases has numerous applications, for instance in computer aided design, robotics, and other areas of engineering. This project addresses several topics in Commutative Algebra that have close connections with Algebraic and Analytic Geometry and with Elimination Theory. They include the implicitization problem for Rees algebras and rational maps, equisingularity theory, the Poincare problem for plane foliations, and residual intersection theory. Determining the implicit equations of graphs and images of rational maps is a classical, but open problem in elimination theory, which amounts to finding defining ideals of Rees algebras. Previously, the PI and his collaborators solved this problem for Rees algebras of codimension three Gorenstein ideals, under the additional assumption that the entries of a syzygy matrix of the ideal generate a complete intersection. Now the PI intends to remove this crucial hypothesis. The PI also plans to investigate Rees algebras of more general ideals, with the aim to obtain at least qualitative statements and bounds for the implicit equations. A goal in equisingularity theory is to devise fiberwise numerical criteria for when a family of analytic spaces is topologically trivial. An important intermediate step are numerical characterizations of integral dependence of modules. The PI intends to prove such a characterization using a notion of multiplicity that is inspired by intersection theory. Poincare had asked how to decide whether a singular algebraic foliation of the complex plane has an algebraic curve as a leaf. In more recent times, this question has often been treated as a problem about relating invariants of a vector field to invariants of curves or varieties that are left invariant by the vector field. The PI will investigate this problem, using his expertise from prior work on algebraic differentials and Castelnuovo-Mumford regularity. The notion of residual intersection, a generalization of linkage or liaison, is ubiquitous and appears naturally in intersection theory and in the study of Rees algebras, for instance. Of central importance are the Cohen-Macaulayness and duality properties of residual intersections. Based on partial results and experimental evidence, David Eisenbud and the PI have observed that, unexpectedly, many residual intersections, even when they fail to be Cohen-Macaulay, admit maximal Cohen-Macaulay modules of rank one that are self-dual. The PI and his collaborators intend to give a proof of this unusual phenomenon.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项资助了交换代数的研究,这是多个未知数中多项式方程系统的研究。为此,人们认为方程系统的所有解决方案的收集是一个几何对象,并研究了该对象上定义的函数。逆转透视图导致了隐式问题,研究者计划处理的问题:给定一个几何对象,例如曲线或表面,人们希望构建具有将几何对象作为其解决方案集的多项式方程系统。一旦知道多项式方程的系统,例如,决定特定点是否位于表面或表面是否在其一个点之一上平滑变得更容易。隐式问题很困难,需要纯数学的高级技术,但是它的解决方案即使在特定情况下也具有许多应用程序,例如在计算机辅助设计,机器人技术和其他工程领域中。该项目介绍了与代数和分析几何以及消除理论有密切联系的交换代数中的几个主题。它们包括REES代数和理性图的隐式问题,平等性理论,平面叶子的庞加罗问题以及残留的相交理论。确定图形的隐式方程和理性图的图像是消除理论中的经典但开放的问题,它等于找到定义REES代数的理想。以前,PI和他的合作者解决了Codimension三戈伦斯坦理想的REES代数的问题,这是在理想的Syzygy矩阵的条目产生完整的交叉点的其他假设下。现在,PI打算去除这一关键假设。 PI还计划调查更一般理想的REES代数,目的是为隐式方程提供至少定性陈述和界限。方程性理论的目标是设计何时拓扑空间的何时拓扑。一个重要的中间步骤是模块的积分依赖性的数值特征。 PI打算使用受相交理论启发的多重性概念来证明这种表征。 Poincare询问了如何确定复杂平面的奇异代数叶面是否具有代数曲线为叶子。在最近的时候,这个问题通常被视为将向量场的不变性与矢量场留下的曲线或品种不变的变种的不变性。 PI将利用他从代数差异和Castelnuovo-Mumford的规律性方面进行的专业知识来调查这个问题。剩余交叉的概念是无处不在的连锁或联络的概括,在相交理论和REES代数的研究中自然而然。至关重要的是残留相交的Cohen-Macaulays和二元性能。基于部分结果和实验证据,David Eisenbud和PI观察到,即使许多残留的交叉路口,即使它们无法成为Cohen-Macaulay,也承认最大的Cohen-Macaulay模块是自我双重的。 PI及其合作者打算证明这种不寻常的现象。该奖项反映了NSF的法定使命,并被认为是使用基金会的知识分子优点和更广泛的影响评估标准的评估值得支持的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Duality and socle generators for residual intersections
残差交集的对偶性和 socle 生成器
Multiplicity sequence and integral dependence
多重序列和积分依赖性
  • DOI:
    10.1007/s00208-020-02059-5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Polini, Claudia;Trung, Ngo Viet;Ulrich, Bernd;Validashti, Javid
  • 通讯作者:
    Validashti, Javid
Degree bounds for local cohomology
局部上同调的度界
Residual intersections and linear powers
剩余交点和线性幂
  • DOI:
    10.1090/btran/127
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eisenbud, David;Huneke, Craig;Ulrich, Bernd
  • 通讯作者:
    Ulrich, Bernd
The mathematical contributions of Craig Huneke
Craig Huneke 的数学贡献
  • DOI:
    10.1016/j.jalgebra.2020.05.009
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Hochster, Melvin;Ulrich, Bernd
  • 通讯作者:
    Ulrich, Bernd
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernd Ulrich其他文献

Multidegrees, families, and integral dependence
多学位、家庭和整体依赖
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yairon Cid‐Ruiz;C. Polini;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
Tangent star cones.
相切星锥。

Bernd Ulrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernd Ulrich', 18)}}的其他基金

Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
  • 批准号:
    2317351
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
  • 批准号:
    2201149
  • 财政年份:
    2022
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Standard Grant
Algebra and Geometry Meetings in the Midwest
中西部的代数和几何会议
  • 批准号:
    1446115
  • 财政年份:
    2015
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Continuing Grant
Problems in Commutative Algebra: Free Resolutions, Multiplicities, and Blowup Rings
交换代数问题:自由解析、重数和爆炸环
  • 批准号:
    1503605
  • 财政年份:
    2015
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Standard Grant
Rees algebras and singularities
里斯代数和奇点
  • 批准号:
    1205002
  • 财政年份:
    2012
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Continuing Grant
Commutative Algebra of Alternating Polynomials
交替多项式的交换代数
  • 批准号:
    0901367
  • 财政年份:
    2009
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Standard Grant
Multiplicity theory and related topics in commutative algebra
交换代数中的多重性理论及相关主题
  • 批准号:
    0901613
  • 财政年份:
    2009
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Continuing Grant
PASI: Commutative Algebra and its Connections to Geometry; Olinda, Brazil, Summer 2009
PASI:交换代数及其与几何的联系;
  • 批准号:
    0819049
  • 财政年份:
    2009
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Standard Grant
Special Algebra Meetings in the Midwest
中西部特别代数会议
  • 批准号:
    0753127
  • 财政年份:
    2008
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Continuing Grant
Cores, regularity and principal ideal theorems
核心、正则性和主要理想定理
  • 批准号:
    0501011
  • 财政年份:
    2005
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于空间拓扑-可解释性深度残差网络的泛瘤种抗PD1/PD-L1免疫治疗应答预测模型研究
  • 批准号:
    82373428
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于残差分析的元胞自动机模型及土地利用变化机理挖掘研究
  • 批准号:
    42271437
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于不一致性补偿和残差融合估计的动力电池全寿命周期多故障诊断研究
  • 批准号:
    62263009
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于残差分析的元胞自动机模型及土地利用变化机理挖掘研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
融合多源数据及残差地形模型技术的东南极伊丽莎白公主地重力场精化研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
  • 批准号:
    10748341
  • 财政年份:
    2024
  • 资助金额:
    $ 32.15万
  • 项目类别:
Greatwall in replication stress/DNA damage responses and oral cancer resistance
长城在复制应激/DNA损伤反应和口腔癌抵抗中的作用
  • 批准号:
    10991546
  • 财政年份:
    2024
  • 资助金额:
    $ 32.15万
  • 项目类别:
STTR Phase II: Nanomaterial-based Residual Active Disinfectant for Decreasing Surface Acquired Infections
STTR 第二阶段:基于纳米材料的残留活性消毒剂,用于减少表面获得性感染
  • 批准号:
    2208717
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Cooperative Agreement
Topology optimization of joints making use of residual stress in metal 3D printing
利用金属 3D 打印中的残余应力进行接头拓扑优化
  • 批准号:
    23K17787
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of BioMara’s sustainable biorefinery for biomanufacturing new products from residual ‘waste’ streams and sustainability improvements
开发 BioMara 的可持续生物精炼厂,利用残余“废物”流生物制造新产品并提高可持续性
  • 批准号:
    10068120
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了