Workshop on Large-Scale Inverse Problems and Quantification of Uncertainty
大规模反问题和不确定性量化研讨会
基本信息
- 批准号:0754077
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-15 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
OCI 0738145Omar GhattasUniversity of Texas at AustinWorkshop: Large-scale Inverse Problems and Quantification of UncertaintyThe three-day workshop will be held on September 10-12, 2007, at the Bishop?s Lodge near Santa Fe, NM, site of our two previous workshops. The number of participants will be limited to 50, all invited, to create an optimal environment for discussion and discourse. In addition, another 10 participants will be drawn from an applicant pool of postdocs and students.Intellectual Merits.Many classes of problems in simulation-based science and engineering are characterized by a cycle of observation, data assimilation, prediction, and decision-making. The critical steps in this process involve: (1) assimilating observational data into large-scale simulations to estimate uncertainties in input parameters, (2) propagation of those uncertainties through the simulation to predict output quantities of interest, and (3) determination of an optimal control or decision-making strategy taking into account the uncertain outputs.For many problems, the input parameters cannot be measured directly; instead they must be inferred from observations of simulation outputs. The estimation of input parameters and associated uncertainties from observations and from a computational model linking inputs to outputs constitutes a statistical inverse problem. The uncertainties in the input parameters result from observational errors, inadequate computational models, and uncertain prior models of the inputs, and Bayesian inference often plays a central role. Characterization of the uncertainties in the inputs for high-dimensional parameter spaces and expensive forward simulations remains a tremendous challenge for many problems today. Yet despite their difficulties, there is a crucial unmet need for the development of scalable numerical algorithms for the solution of large scale statistical inverse problems: uncertainty estimation in model inputs is an important precursor of the quantification of uncertainties underpinning prediction and decision-making. While in the past, full and rigorous quantification of uncertainty in inverse problems and data assimilation for large scale systems has been intractable, several recent developments are making this enterprise viable: (1) the maturing state of algorithms and software for forward simulation, and their availability in the form of community codes, for many classes of problems in science and engineering; (2) the arrival of the petascale computing age; and (3) the explosion of observational data, much of it archived and accessible over data grids.Broader impacts.Accordingly, the P.I. proposes to organize a workshop dedicated to uncertainty estimation for large-scalemodels that will capitalize on these three Cyberinfrastructure developments. The workshop will assess the current state-of-the-art and identify needs and opportunities for future research. Leading figures in larges scale statistical inversion and data assimilation will be invited, along with promising junior investigators, postdocs, and students. The workshop will bring together and cross-fertilize the perspectives of researchers in the areas of large scale optimization, statistics, inverse problems, applied and computational math, high performance computing, and forefront applications. The focus will be on methods to characterize uncertainty in inputs (typically coefficients, initial conditions or system state, boundary conditions, sources, or other parameters of PDE models) via solution of statistical inverse problems. The workshop will differ from previous workshops in its focus on algorithms and methods that offer scalability to very large-scale models and simulations. The workshop will encourage the exchange of ideas, discuss outstanding unresolved barriers, present general solution strategies, establish future collaborations, and initiate new algorithmic directions. The goal will be to identify the path forward for resolving the difficulties associated with high-dimensional statistical inverse problems, and opportunities in such areas as aerospace, astrophysics, biomedical, chemical, geological, industrial, mechanical, and petroleum engineering and sciences.
OCI 0738145在Austinworkshop上的德克萨斯州的Ghattasuniversity:大规模的逆问题和不确定性的量化为期三天的研讨会将于2007年9月10日至12日在NM附近的NM附近的Bishop's Lodge举行。 参与者的数量将被限制为50,所有参与者都被邀请创造一个最佳的讨论和话语环境。此外,将从申请人和学生的申请人群中吸取另外10名参与者。智能优点。基于模拟的科学和工程中的许多问题的类别的特征是观察,数据同化,预测和决策。此过程中的关键步骤涉及:(1)将观察数据吸收到大规模模拟中,以估计输入参数中的不确定性,((2)通过模拟来传播这些不确定性以预测感兴趣的输出数量,并且(3)确定最佳的控制策略或确定最佳的决策策略。取而代之的是,必须从模拟输出的观察结果中推断出它们。从观察值和将输入与输出联系起来的计算模型中对输入参数和相关不确定性的估计构成统计反问题。输入参数的不确定性是由观察误差,计算模型不足以及输入的先前模型不确定的,而贝叶斯推论通常起着核心作用。对于当今许多问题,对高维参数空间和昂贵的远期模拟的输入中不确定性的表征仍然是一个巨大的挑战。尽管遇到了困难,但对于开发用于解决大规模统计反问题的可扩展数值算法的至关重要的需求:模型输入中的不确定性估计是基于预测和决策制定的不确定性量化的重要先驱。在过去,大规模系统的反问题和数据同化的不确定性的全面量化非常棘手,但最近的一些发展使该企业可行:(1)算法和远程模拟的成熟状态,以进行远程模拟,以及它们以社区代码的形式,在科学和工程中的许多类别的社区代码形式; (2)Petascale计算年龄的到来; (3)观察数据的爆炸爆炸,其中大部分是在数据网格上访问和访问的。建议组织一个专门针对大规模模型的不确定性估计的研讨会,该研讨会将利用这三个网络基础设施发展。研讨会将评估当前的最新最新,并确定未来研究的需求和机会。 LARGES中的主要数字规模统计反演和数据同化,以及有前途的初级研究人员,博士后和学生。该研讨会将在大规模优化,统计,反问题,应用和计算数学,高性能计算以及最前沿应用程序的领域中汇集在一起并跨批准研究人员的观点。重点将放在通过统计逆问题的解决方案解决输入(通常是系数,初始条件或系统状态,边界条件,源或其他参数)中的不确定性的方法。该研讨会将与以前的研讨会不同,重点是算法和方法,这些算法和方法为非常大规模的模型和模拟提供了可扩展性。研讨会将鼓励思想的交流,讨论未解决的未解决的障碍,提出一般解决方案策略,建立未来的合作并启动新的算法指示。目的是确定解决与高维统计反问题相关的困难以及航空航天,天体物理学,生物医学,化学,地质,工业,机械和石油工程和科学等领域的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Omar Ghattas其他文献
Sensitivity Technologies for Large Scale Simulation
大规模仿真的灵敏度技术
- DOI:
10.2172/921606 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. Collis;R. Bartlett;Thomas Michael Smith;Matthias Heinkenschloss;Lucas C. Wilcox;Judith C. Hill;Omar Ghattas;Martin Olof Berggren;V. Akçelik;C. Ober;B. van Bloemen Waanders;E. Keiter - 通讯作者:
E. Keiter
Assessment of a fictitious domain method for patient-specific biomechanical modelling of press-fit orthopaedic implantation
评估用于压配骨科植入的患者特异性生物力学模型的虚拟域方法
- DOI:
10.1080/10255842.2010.545822 - 发表时间:
2012 - 期刊:
- 影响因子:1.6
- 作者:
L. Kallivokas;S. Na;Omar Ghattas;B. Jaramaz - 通讯作者:
B. Jaramaz
Point Spread Function Approximation of High-Rank Hessians with Locally Supported Nonnegative Integral Kernels
具有局部支持的非负积分核的高阶 Hessian 矩阵的点扩散函数逼近
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.1
- 作者:
Nick Alger;Tucker Hartland;N. Petra;Omar Ghattas - 通讯作者:
Omar Ghattas
Real-time aerodynamic load estimation for hypersonics via strain-based inverse maps
通过基于应变的逆映射对高超音速进行实时气动载荷估计
- DOI:
10.2514/6.2024-1228 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Julie Pham;Omar Ghattas;Karen Willcox - 通讯作者:
Karen Willcox
Omar Ghattas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Omar Ghattas', 18)}}的其他基金
OAC Core: The Best of Both Worlds: Deep Neural Operators as Preconditioners for Physics-Based Forward and Inverse Problems
OAC 核心:两全其美:深度神经算子作为基于物理的正向和逆向问题的预处理器
- 批准号:
2313033 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
合作研究:SI2-SSI:不确定性下的数据与复杂预测模型的集成:大规模贝叶斯反演的可扩展软件框架
- 批准号:
1550593 - 财政年份:2016
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: A Bayesian inference/prediction/control framework for optimal management of CO2 sequestration
CDS
- 批准号:
1508713 - 财政年份:2015
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
CDI Type II/Collaborative Research: Ultra-high Resolution Dynamic Earth Models through Joint Inversion of Seismic and Geodynamic Data
CDI II 型/合作研究:通过地震和地球动力学数据联合反演的超高分辨率动态地球模型
- 批准号:
1028889 - 财政年份:2010
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
CDI-Type II: Dynamics of Ice Sheets: Advanced Simulation Models, Large-Scale Data Inversion, and Quantification of Uncertainty in Sea Level Rise Projections
CDI-Type II:冰盖动力学:高级模拟模型、大规模数据反演和海平面上升预测不确定性的量化
- 批准号:
0941678 - 财政年份:2009
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
CMG Collaborative Research: Model Integration and Joint Inversion for Large-Scale Multi-Modal Geophysical Data
CMG协同研究:大规模多模态地球物理数据模型集成与联合反演
- 批准号:
0724746 - 财政年份:2007
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Dynamics of the Earth: High-Resolution Mantle Convection Simulation on Petascale Computers
合作研究:了解地球动力学:千万亿级计算机上的高分辨率地幔对流模拟
- 批准号:
0749334 - 财政年份:2007
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
MRI: Acquisition of a High Performance Computing System for Online Simulation
MRI:获取用于在线仿真的高性能计算系统
- 批准号:
0619838 - 财政年份:2006
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Collabortive Research: DDDAS-TMRP: MIPS: A Real-Time Measurement-Inversion-Prediction-Steering Framework for Hazardous Events
合作研究:DDDAS-TMRP:MIPS:危险事件实时测量-反演-预测-引导框架
- 批准号:
0540372 - 财政年份:2005
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
- 批准号:
0427985 - 财政年份:2004
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
相似国自然基金
面向大模型性能提升的提示词可视调优理论与方法
- 批准号:62302435
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向大规模盲源分离的高维度大尺寸张量分解方法研究
- 批准号:62071082
- 批准年份:2020
- 资助金额:54 万元
- 项目类别:面上项目
含规模化新能源接入的交直流大电网动态无功储备评估“时间-空间-优化”降维等值方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:
面向科学大装置超大规模数据流的定制计算研究
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:联合基金项目
利用Cas9大规模基因敲除技术在HIV-1潜伏细胞上筛选及鉴定与HIV潜伏相关的关键宿主基因
- 批准号:31771484
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Systems Science Approaches for Reducing Youth Obesity Disparities
减少青少年肥胖差异的系统科学方法
- 批准号:
10664145 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
- 批准号:
10643212 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
We Are All Scientists - promotes precision medicine and health research in Indigenous communities through a large scale multimedia campaign and building of strategic partnerships with schools and TCUs
我们都是科学家 - 通过大规模多媒体活动以及与学校和 TCU 建立战略合作伙伴关系,促进原住民社区的精准医学和健康研究
- 批准号:
10912329 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Cloud Enabled, Rigorous, Functional Assay Calibration (CERFAC)
支持云的严格功能测定校准 (CERFAC)
- 批准号:
10827690 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
iDASH Genome Privacy and Security Competition Workshop
iDASH 基因组隐私和安全竞赛研讨会
- 批准号:
10614292 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别: