ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
基本信息
- 批准号:0427985
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-15 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for Collaboration0427985, 0427464, 0427094,0427912,0427695A multidisciplinary team of researchers from Argonne NationalLaboratory, Carnegie Mellon University, Columbia University,University of Chicago, Emory University, and University ofPennsylvania, with collaborators from the Universities of Graz andLubek, will initiate a long term research project on image-driven,inversion-based biophysical modeling. The team includes expertise innumerical algorithms and scientific computing, fluid and solidbiomechanics, PDE optimization, inverse problems, medical imageanalysis and processing, and distributed and grid computing necessaryto tackle this class of problems.This project aims to create a framework for assimilating multimodaldynamic medical image data to produce highly-resolved,physically-realistic, patient-specific biomechanics models. While thecomputational and algorithmic aspects of the project are widelyapplicable, the target application will be the construction ofpatient-specific cardiac biomechanics models from 4D image datasets ofheart motion. Such models are useful for medical diagnosis andsurgical planning. This places a premium on quick turnaround of thecomputations, which mean they must be fast, scalable, and capable ofexploiting grid-based computing.Research will focus on three key areas that undergird the project'soverall goals: registration, inversion, and distributed computing. Theregistration research component will create multilevel algorithms toextract cardiac deformation histories from time-varying medical imagedatasets via the solution of sequences of 3D image registrationproblems. The inversion research component will develop multilevelalgorithms that use these deformation field histories as virtualobservations to solve inverse problems for cardiac biomechanicalparameters. The distributed computing research component will createtools for performance prediction and resource scheduling that supportsimulations across distributed computational resources.Dovetailing with the research components, the project will undertakean educational program designed to communicate the fruits of its workand of the wider benefits of the integration of the biomedicalsciences, computing sciences, and computational sciences, to a moregeneral audience of students, disciplinary researchers, and the laypublic. The professional activities of the team members in theinversion, image registration, grid computing, and computationalscience communities will be parlayed to organize workshops andinternational meetings, edit volumes, teach summer schools, developuniversity and short courses, and engage in outreach activities---asthey have done in the past---but with greater emphasis on the field ofcomputational biomedicine. The proposed image-based cardiacbiomechanics modeling application will provide an excellentopportunity to demonstrate the benefits to health and welfare thatadvances in optimization-based registration and inversion algorithmsand Grid computing can provide.
协作摘要0427985,0427464,0427094,0427912,0427695A来自阿尔波尼·纳瓦尔(Argonne nationallaboratory),卡内基·梅尔(Carnegie Mellaboratory)的多学科研究人员,哥伦比亚大学,哥伦比亚大学,芝加哥大学,埃默里大学,埃默里大学,埃默里大学,埃默里大学,埃默里大学,及其途径,及其合作培训。关于图像驱动的,基于反演的生物物理建模的术语研究项目。该团队包括无知的算法和科学计算,流动性和固体力学,PDE优化,逆问题,医学成像分析和处理以及分布式和网格计算所需的问题来解决这类问题。该项目旨在创建一个框架,以创建一个框架,以吸收多个动态的医学图像模型,以使其具有性能性化度为机械,并具有高度差异化的型号。虽然该项目的计算和算法方面是可广泛应用的,但目标应用程序将是从HEART MOTION的4D图像数据集中构建特定于患者的心脏生物力学模型。这样的模型可用于医学诊断和外科计划。这对造成计算的快速转变进行了溢价,这意味着它们必须快速,可扩展且能够探索基于网格的计算。研究将重点关注三个关键领域,这些领域是项目“提出目标:注册,倒置和分布计算”的三个关键领域。该研究组件将通过3D图像登记问题的序列解决时变化的医学成像算术来创建多级算法,从而从时变的医学成像中提取心脏变形历史。反转研究组件将开发多级别的载体,这些多级别的载体将这些变形场历史记录用作虚拟观察,以解决心脏生物力学参数的反问题。分布式的计算研究组件将用于绩效预测和资源调度的著作,这些计划支持分布式计算资源跨越分布式的计算资源。依次进行研究,该项目将承担旨在传达其工作的成果,旨在传达其旨在传达生物医学和计算科学和计算科学界,更多计算机科学和计算学家的综合效果的成果的教育计划Laypublic。 The professional activities of the team members in theinversion, image registration, grid computing, and computationalscience communities will be parlayed to organize workshops andinternational meetings, edit volumes, teach summer schools, developuniversity and short courses, and engage in outreach activities---asthey have done in the past---but with greater emphasis on the field ofcomputational biomedicine.拟议的基于图像的心脏动力学建模应用程序将提供出色的企业,以证明可以提供基于优化的注册和反转算法和网格计算的健康和福利的好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Omar Ghattas其他文献
Sensitivity Technologies for Large Scale Simulation
大规模仿真的灵敏度技术
- DOI:
10.2172/921606 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. Collis;R. Bartlett;Thomas Michael Smith;Matthias Heinkenschloss;Lucas C. Wilcox;Judith C. Hill;Omar Ghattas;Martin Olof Berggren;V. Akçelik;C. Ober;B. van Bloemen Waanders;E. Keiter - 通讯作者:
E. Keiter
Assessment of a fictitious domain method for patient-specific biomechanical modelling of press-fit orthopaedic implantation
评估用于压配骨科植入的患者特异性生物力学模型的虚拟域方法
- DOI:
10.1080/10255842.2010.545822 - 发表时间:
2012 - 期刊:
- 影响因子:1.6
- 作者:
L. Kallivokas;S. Na;Omar Ghattas;B. Jaramaz - 通讯作者:
B. Jaramaz
Real-time aerodynamic load estimation for hypersonics via strain-based inverse maps
通过基于应变的逆映射对高超音速进行实时气动载荷估计
- DOI:
10.2514/6.2024-1228 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Julie Pham;Omar Ghattas;Karen Willcox - 通讯作者:
Karen Willcox
Point Spread Function Approximation of High-Rank Hessians with Locally Supported Nonnegative Integral Kernels
具有局部支持的非负积分核的高阶 Hessian 矩阵的点扩散函数逼近
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.1
- 作者:
Nick Alger;Tucker Hartland;N. Petra;Omar Ghattas - 通讯作者:
Omar Ghattas
Omar Ghattas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Omar Ghattas', 18)}}的其他基金
OAC Core: The Best of Both Worlds: Deep Neural Operators as Preconditioners for Physics-Based Forward and Inverse Problems
OAC 核心:两全其美:深度神经算子作为基于物理的正向和逆向问题的预处理器
- 批准号:
2313033 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
合作研究:SI2-SSI:不确定性下的数据与复杂预测模型的集成:大规模贝叶斯反演的可扩展软件框架
- 批准号:
1550593 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
CDS&E: Collaborative Research: A Bayesian inference/prediction/control framework for optimal management of CO2 sequestration
CDS
- 批准号:
1508713 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
CDI Type II/Collaborative Research: Ultra-high Resolution Dynamic Earth Models through Joint Inversion of Seismic and Geodynamic Data
CDI II 型/合作研究:通过地震和地球动力学数据联合反演的超高分辨率动态地球模型
- 批准号:
1028889 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CDI-Type II: Dynamics of Ice Sheets: Advanced Simulation Models, Large-Scale Data Inversion, and Quantification of Uncertainty in Sea Level Rise Projections
CDI-Type II:冰盖动力学:高级模拟模型、大规模数据反演和海平面上升预测不确定性的量化
- 批准号:
0941678 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
CMG Collaborative Research: Model Integration and Joint Inversion for Large-Scale Multi-Modal Geophysical Data
CMG协同研究:大规模多模态地球物理数据模型集成与联合反演
- 批准号:
0724746 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Understanding the Dynamics of the Earth: High-Resolution Mantle Convection Simulation on Petascale Computers
合作研究:了解地球动力学:千万亿级计算机上的高分辨率地幔对流模拟
- 批准号:
0749334 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Workshop on Large-Scale Inverse Problems and Quantification of Uncertainty
大规模反问题和不确定性量化研讨会
- 批准号:
0754077 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
MRI: Acquisition of a High Performance Computing System for Online Simulation
MRI:获取用于在线仿真的高性能计算系统
- 批准号:
0619838 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Collabortive Research: DDDAS-TMRP: MIPS: A Real-Time Measurement-Inversion-Prediction-Steering Framework for Hazardous Events
合作研究:DDDAS-TMRP:MIPS:危险事件实时测量-反演-预测-引导框架
- 批准号:
0540372 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
1404694 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
- 批准号:
1139735 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0963973 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
1018072 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
- 批准号:
0838899 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant