MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications

MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用

基本信息

  • 批准号:
    0732318
  • 负责人:
  • 金额:
    $ 25.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-10-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

Proposal ID(s): 0732318 and 0732299PI(s): Haesun Park and Moody ChuInstitition(s): GaTech and NCSUTitle: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and ApplicationsABSTRACT:Mathematical models with nonnegative data values are abounding in sciences and engineering. For the sake of physical feasibility and interpretability, the nature of nonnegative must be retained in computation and analysis. This work concerns itself with the factorization of nonnegative matrix into product of lower rank nonnegative matrices. Such a notion of the nonnegative matrix factorization plays a major role in a wide range of important applications including text mining, cheminformatics, factor retrieval, image articulation, bioinformatics, and in dimension reduction and clustering in pattern and data analysis. The discoveries from this proposed research are expected to impact not only the advanced theoretical foundations of matrix computation, but also contribute to the general areas of data mining such as dimension reduction, clustering, and visualization.The basic question behind the nonnegative matrix factorization (NMF) is to best approximate a given nonnegative data matrix as the product of two lower dimensional and, hence, lower rank nonnegative matrices. The two lower rank matrices provides lot of essential information that, otherwise, would be difficult to retrieve from the original matrix. Many NMF techniques have been proposed in the literature, yet there is still little theory on how the NMF can be robustly and efficiently solved. In this work, development of new faster algorithms will be conducted through structured and comprehensive performance evaluation of promising research directions, including the active set and geometry based algorithms, against real-world application data to obtain valuable insights. The proposed study of the geometric structure of the NMF and theoretical properties of the NMF algorithms, such as convergence, should provide the basis of assessment for any NMF methods. Applicability of the NMF to dimension reduction and clustering will also be investigated. Results of this research are also likely to have potential applications in database management, medical examination and diagnosis, bio-chemical selection, and biological networks.
提案 ID(s):0732318 和 0732299PI(s):Haesun Park 和 Moody Chu 机构:GaTech 和 NCSU 标题:协作研究:快速非负矩阵分解:理论、算法和应用摘要:具有非负数据值的数学模型比比皆是科学和工程。为了物理可行性和可解释性,在计算和分析中必须保留非负的性质。这项工作涉及将非负矩阵分解为低阶非负矩阵的乘积。这种非负矩阵分解的概念在广泛的重要应用中发挥着重要作用,包括文本挖掘、化学信息学、因子检索、图像清晰度、生物信息学以及模式和数据分析中的降维和聚类。这项研究的发现不仅会影响矩阵计算的高级理论基础,还会对数据挖掘的一般领域(例如降维、聚类和可视化)做出贡献。非负矩阵分解(NMF)背后的基本问题)是将给定的非负数据矩阵最好地近似为两个较低维度的乘积,因此也是较低秩的非负矩阵。两个较低秩的矩阵提供了许多基本信息,否则将很难从原始矩阵中检索这些信息。文献中已经提出了许多 NMF 技术,但关于如何鲁棒且有效地求解 NMF 的理论仍然很少。在这项工作中,将通过对有前途的研究方向(包括基于活动集和基于几何的算法)进行结构化和全面的性能评估来开发新的更快的算法,并根据实际应用数据来获得有价值的见解。所提出的对 NMF 几何结构和 NMF 算法的理论特性(例如收敛性)的研究应该为任何 NMF 方法提供评估基础。还将研究 NMF 在降维和聚类方面的适用性。这项研究的结果也可能在数据库管理、医学检查和诊断、生化选择和生物网络方面有潜在的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haesun Park其他文献

TopicSifter: Interactive Search Space Reduction through Targeted Topic Modeling
TopicSifter:通过有针对性的主题建模减少交互式搜索空间
Command Generation Techniques for a Pin Array Using the SVD and the SNMF
使用 SVD 和 SNMF 的引脚阵列命令生成技术
  • DOI:
    10.3182/20120905-3-hr-2030.00072
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryder C. Winck;Jingu Kim;W. Book;Haesun Park
  • 通讯作者:
    Haesun Park
Structured total least norm method for Toeplitz problems
Toeplitz 问题的结构化总最小范数法
VisIRR: Interactive Visual Information Retrieval and Recommendation for Large-scale Document Data
VisIRR:大规模文档数据的交互式视觉信息检索和推荐
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Choo;C. Lee;Edward Clarkson;Zhicheng Liu;Hanseung Lee;Duen Horng Chau;Fuxin Li;R. Kannan;Charles D. Stolper;D. Inouye;Nishant A. Mehta;H. Ouyang;Subhojit Som;Ale;er G. Gray;er;J. Stasko;Haesun Park
  • 通讯作者:
    Haesun Park
Surface analysis of sequential semi-solvent vapor impact (SAVI) for studying microstructural arrangements of poly(lactide-co-glycolide) microparticles.
连续半溶剂蒸气冲击 (SAVI) 的表面分析,用于研究聚丙交酯乙交酯微粒的微观结构排列。

Haesun Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haesun Park', 18)}}的其他基金

Collaborative Research: OAC Core: Robust, Scalable, and Practical Low Rank Approximation
合作研究:OAC 核心:稳健、可扩展且实用的低阶近似
  • 批准号:
    2106738
  • 财政年份:
    2021
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
SI2-SSE: Collaborative Research: High Performance Low Rank Approximation for Scalable Data Analytics
SI2-SSE:协作研究:可扩展数据分析的高性能低秩近似
  • 批准号:
    1642410
  • 财政年份:
    2016
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
CAREER: New Representations of Probability Distributions to Improve Machine Learning --- A Unified Kernel Embedding Framework for Distributions
职业:改进机器学习的概率分布的新表示——统一的分布内核嵌入框架
  • 批准号:
    1350983
  • 财政年份:
    2014
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Continuing Grant
EAGER: Hierarchical Topic Modeling by Nonnegative Matrix Factorization for Interactive Multi-scale Analysis of Text Data
EAGER:通过非负矩阵分解进行分层主题建模,用于文本数据的交互式多尺度分析
  • 批准号:
    1348152
  • 财政年份:
    2013
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
EAGER: Fast and Accurate Nonnegative Tensor Decompositions: Algorithms and Software
EAGER:快速准确的非负张量分解:算法和软件
  • 批准号:
    0956517
  • 财政年份:
    2009
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
FODAVA-Lead: Dimension Reduction and Data Reduction: Foundations for Visualization
FODAVA-Lead:降维和数据缩减:可视化的基础
  • 批准号:
    0808863
  • 财政年份:
    2008
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Continuing Grant
SGER: Effective Network Anomaly Detection Based on Adaptive Machine Learning
SGER:基于自适应机器学习的有效网络异常检测
  • 批准号:
    0715342
  • 财政年份:
    2007
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Greedy Approximations with Nonsubmodular Potential Functions
协作研究:具有非子模势函数的贪婪近似
  • 批准号:
    0728812
  • 财政年份:
    2007
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
CompBio: Collaborative Research: Development of Effective Gene Selection Algorithms for Microarray Data Analysis
CompBio:合作研究:开发用于微阵列数据分析的有效基因选择算法
  • 批准号:
    0621889
  • 财政年份:
    2006
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Continuing Grant
Special Meeting: Workshop on Future Direction in Numerical Algorithms and Optimization
特别会议:数值算法与优化未来方向研讨会
  • 批准号:
    0633793
  • 财政年份:
    2006
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant

相似国自然基金

FGD6/RhoD/DIAPH3调控微丝重塑在Nb2C/MCS促进内皮细胞迁移中的机制研究
  • 批准号:
    82301145
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MCs-MCT/PAR2/TLR4通路研究健脾清化颗粒干预胃食管反流病LPS诱导的食管炎症的作用机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
益母草总生物碱抑制HIF-1α介导的MCs活化抗过敏性哮喘机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
对虾养殖池塘底泥微生物厌氧降解微囊藻毒素(MCs)的协同代谢机制研究
  • 批准号:
    32172978
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
西天山夏季中—β尺度MCS对流云宏微特征及对降水影响研究
  • 批准号:
    U2003106
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    联合基金项目

相似海外基金

MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
  • 批准号:
    0732196
  • 财政年份:
    2007
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
  • 批准号:
    0732169
  • 财政年份:
    2007
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732299
  • 财政年份:
    2007
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
  • 批准号:
    0732175
  • 财政年份:
    2007
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
Collaborative Research: MSPA-MCS: Sparse Multivariate Data Analysis
合作研究:MSPA-MCS:稀疏多元数据分析
  • 批准号:
    0625371
  • 财政年份:
    2006
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了