MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications

MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用

基本信息

  • 批准号:
    0732299
  • 负责人:
  • 金额:
    $ 23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-10-01 至 2011-09-30
  • 项目状态:
    已结题

项目摘要

Proposal ID(s): 0732318 and 0732299PI(s): Haesun Park and Moody ChuInstitition(s): GaTech and NCSUTitle: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and ApplicationsABSTRACT:Mathematical models with nonnegative data values are abounding in sciences and engineering. For the sake of physical feasibility and interpretability, the nature of nonnegative must be retained in computation and analysis. This work concerns itself with the factorization of nonnegative matrix into product of lower rank nonnegative matrices. Such a notion of the nonnegative matrix factorization plays a major role in a wide range of important applications including text mining, cheminformatics, factor retrieval, image articulation, bioinformatics, and in dimension reduction and clustering in pattern and data analysis. The discoveries from this proposed research are expected to impact not only the advanced theoretical foundations of matrix computation, but also contribute to the general areas of data mining such as dimension reduction, clustering, and visualization.The basic question behind the nonnegative matrix factorization (NMF) is to best approximate a given nonnegative data matrix as the product of two lower dimensional and, hence, lower rank nonnegative matrices. The two lower rank matrices provides lot of essential information that, otherwise, would be difficult to retrieve from the original matrix. Many NMF techniques have been proposed in the literature, yet there is still little theory on how the NMF can be robustly and efficiently solved. In this work, development of new faster algorithms will be conducted through structured and comprehensive performance evaluation of promising research directions, including the active set and geometry based algorithms, against real-world application data to obtain valuable insights. The proposed study of the geometric structure of the NMF and theoretical properties of the NMF algorithms, such as convergence, should provide the basis of assessment for any NMF methods. Applicability of the NMF to dimension reduction and clustering will also be investigated. Results of this research are also likely to have potential applications in database management, medical examination and diagnosis, bio-chemical selection, and biological networks.
提案 ID(s):0732318 和 0732299PI(s):Haesun Park 和 Moody Chu 机构:GaTech 和 NCSU 标题:协作研究:快速非负矩阵分解:理论、算法和应用摘要:具有非负数据值的数学模型比比皆是科学和工程。为了物理可行性和可解释性,在计算和分析中必须保留非负的性质。这项工作涉及将非负矩阵分解为低阶非负矩阵的乘积。这种非负矩阵分解的概念在广泛的重要应用中发挥着重要作用,包括文本挖掘、化学信息学、因子检索、图像清晰度、生物信息学以及模式和数据分析中的降维和聚类。这项研究的发现不仅会影响矩阵计算的高级理论基础,还会对数据挖掘的一般领域(例如降维、聚类和可视化)做出贡献。非负矩阵分解(NMF)背后的基本问题)是将给定的非负数据矩阵最好地近似为两个较低维度的乘积,因此也是较低秩的非负矩阵。两个较低秩的矩阵提供了许多基本信息,否则将很难从原始矩阵中检索这些信息。文献中已经提出了许多 NMF 技术,但关于如何鲁棒且有效地求解 NMF 的理论仍然很少。在这项工作中,将通过对有前途的研究方向(包括基于活动集和基于几何的算法)进行结构化和全面的性能评估来开发新的更快的算法,并根据实际应用数据来获得有价值的见解。所提出的对 NMF 几何结构和 NMF 算法的理论特性(例如收敛性)的研究应该为任何 NMF 方法提供评估基础。还将研究 NMF 在降维和聚类方面的适用性。这项研究的结果也可能在数据库管理、医学检查和诊断、生化选择和生物网络方面有潜在的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moody Chu其他文献

Moody Chu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moody Chu', 18)}}的其他基金

Preparing Hamiltonians for Quantum Simulation: A Computational Framework for Cartan Decomposition via Lax Dynamics
为量子模拟准备哈密顿量:通过 Lax 动力学进行嘉当分解的计算框架
  • 批准号:
    2309376
  • 财政年份:
    2023
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
From Quantum Entanglement to Tensor Decomposition by Global Optimization
从量子纠缠到全局优化的张量分解
  • 批准号:
    1912816
  • 财政年份:
    2019
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Numerical Algorithms as Dynamcal Systems - Structure Preservation, Convergence Theory, and Rediscretization
作为动态系统的数值算法 - 结构保持、收敛理论和重新离散化
  • 批准号:
    1316779
  • 财政年份:
    2013
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Automated Structure Generation, Error Correction, and Semi-Definite Programming Techniques for Structured Quadratic Inverse Eigenvale Problems: Theory, Algorithms and Applications
结构化二次反特征值问题的自动结构生成、纠错和半定编程技术:理论、算法和应用
  • 批准号:
    1014666
  • 财政年份:
    2010
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Quadratic Inverse Eigenvalue Problems for Model Updating in Science and Engineering: Theory and Computation
合作提案:科学与工程模型更新的二次逆特征值问题:理论与计算
  • 批准号:
    0505880
  • 财政年份:
    2005
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
The Centroid Decomposition and Other Approximations to the SVD
SVD 的质心分解和其他近似
  • 批准号:
    0204157
  • 财政年份:
    2002
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Algorithms for the Inverse Problem of Matrix Construction
矩阵构造反问题的算法
  • 批准号:
    0073056
  • 财政年份:
    2000
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Adaptive Control Algorithms for Adaptive Optics Applications
用于自适应光学应用的自适应控制算法
  • 批准号:
    9803759
  • 财政年份:
    1998
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Eigenvalue Problems
数学科学:反特征值问题
  • 批准号:
    9422280
  • 财政年份:
    1995
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Matrix Differential Equations and Their Applications
数学科学:矩阵微分方程及其应用
  • 批准号:
    9123448
  • 财政年份:
    1992
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant

相似国自然基金

FGD6/RhoD/DIAPH3调控微丝重塑在Nb2C/MCS促进内皮细胞迁移中的机制研究
  • 批准号:
    82301145
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MCs-MCT/PAR2/TLR4通路研究健脾清化颗粒干预胃食管反流病LPS诱导的食管炎症的作用机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
益母草总生物碱抑制HIF-1α介导的MCs活化抗过敏性哮喘机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
对虾养殖池塘底泥微生物厌氧降解微囊藻毒素(MCs)的协同代谢机制研究
  • 批准号:
    32172978
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
西天山夏季中—β尺度MCS对流云宏微特征及对降水影响研究
  • 批准号:
    U2003106
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    联合基金项目

相似海外基金

MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
  • 批准号:
    0732196
  • 财政年份:
    2007
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
  • 批准号:
    0732169
  • 财政年份:
    2007
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732318
  • 财政年份:
    2007
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
  • 批准号:
    0732175
  • 财政年份:
    2007
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: MSPA-MCS: Sparse Multivariate Data Analysis
合作研究:MSPA-MCS:稀疏多元数据分析
  • 批准号:
    0625371
  • 财政年份:
    2006
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了