Numerical Algorithms as Dynamcal Systems - Structure Preservation, Convergence Theory, and Rediscretization
作为动态系统的数值算法 - 结构保持、收敛理论和重新离散化
基本信息
- 批准号:1316779
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of the project is to improve iterative algorithms in numerical analysis by linking them to particular systems of differential equations. Thirty years ago, it was realized that the QR algorithm for calculating eigenvalues can be considered as a time-T map of the Toda lattice. This opens up the possibility of bringing the qualitative methods of dynamical systems to bear on the algorithm, and to potentially speed up the algorithm by more efficient discretizations. The crucial aspect of the Toda lattice is that it is a continuous conjugation that preserves upper Hessenberg form and therefore the eigenvalues. In recent research, the PI has achieved similar results with the calculation of the singular value decomposition by developing a Lotka-Volterra system that preserves bidiagonal structures, which has led to advances in computing the SVD. This project investigates other dynamical systems preserving symplectic and Hamiltonian structure, which are pivotal in many areas of applications. The ultimate goal is to investigate the connection between their geometric structures and existing numerical algorithms, to establish a rigorous mathematical theory on dynamical behaviors, and to develop possible structure-preserving re-discretizations to improve robustness, speed, and accuracy of iterations in numerical analysis. Structure-preserving dynamical systems are natural and ubiquitous. Conservation laws in the physical world and constrained mechanics in engineered systems are just two examples. Structure preservation is also imperative in computation because it makes possible more efficient algorithms, improves physical feasibility and interpretability, and is more robust in long-term behavior. The proposed research recasts numerical algorithms as differential systems that mimic the structure-preserving properties of the corresponding iterative schemes. Understanding the overall dynamics of the continuum system can shed light on the convergence properties of the related discrete counterparts, and can also contribute to the re-discretization of the continuum system into a new algorithm with better numerical properties. A wide range of applications stands to benefit from the study of properties and geometric structure of these systems, which essentially include all disciplines that entail structure preservation, including classical and quantum mechanics, model reduction, reversible systems, and molecular dynamics.
该项目的重点是通过将迭代算法与特定的微分方程组联系起来来改进数值分析中的迭代算法。三十年前,人们意识到计算特征值的 QR 算法可以被视为 Toda 晶格的时间 T 图。这开辟了将动力系统的定性方法应用于算法的可能性,并有可能通过更有效的离散化来加速算法。 Toda 晶格的关键在于它是一个连续共轭,保留了上 Hessenberg 形式并因此保留了特征值。在最近的研究中,PI 通过开发保留双对角结构的 Lotka-Volterra 系统,在计算奇异值分解方面取得了类似的结果,这导致了 SVD 计算的进步。该项目研究了保留辛和哈密顿结构的其他动力系统,这在许多应用领域都至关重要。最终目标是研究其几何结构与现有数值算法之间的联系,建立关于动力学行为的严格数学理论,并开发可能的结构保持再离散化,以提高数值分析中迭代的鲁棒性、速度和准确性。保持结构的动力系统是自然且普遍存在的。物理世界中的守恒定律和工程系统中的约束力学只是两个例子。结构保存在计算中也是必不可少的,因为它使更高效的算法成为可能,提高了物理可行性和可解释性,并且在长期行为中更加稳健。所提出的研究将数值算法重塑为微分系统,模仿相应迭代方案的结构保持特性。了解连续统系统的整体动力学可以揭示相关离散系统的收敛特性,也有助于将连续统系统重新离散化为具有更好数值特性的新算法。对这些系统的性质和几何结构的研究将使广泛的应用受益,这些系统本质上包括需要结构保存的所有学科,包括经典力学和量子力学、模型简化、可逆系统和分子动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moody Chu其他文献
Moody Chu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moody Chu', 18)}}的其他基金
Preparing Hamiltonians for Quantum Simulation: A Computational Framework for Cartan Decomposition via Lax Dynamics
为量子模拟准备哈密顿量:通过 Lax 动力学进行嘉当分解的计算框架
- 批准号:
2309376 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
From Quantum Entanglement to Tensor Decomposition by Global Optimization
从量子纠缠到全局优化的张量分解
- 批准号:
1912816 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Automated Structure Generation, Error Correction, and Semi-Definite Programming Techniques for Structured Quadratic Inverse Eigenvale Problems: Theory, Algorithms and Applications
结构化二次反特征值问题的自动结构生成、纠错和半定编程技术:理论、算法和应用
- 批准号:
1014666 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
- 批准号:
0732299 - 财政年份:2007
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Proposal: Quadratic Inverse Eigenvalue Problems for Model Updating in Science and Engineering: Theory and Computation
合作提案:科学与工程模型更新的二次逆特征值问题:理论与计算
- 批准号:
0505880 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
The Centroid Decomposition and Other Approximations to the SVD
SVD 的质心分解和其他近似
- 批准号:
0204157 - 财政年份:2002
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Algorithms for the Inverse Problem of Matrix Construction
矩阵构造反问题的算法
- 批准号:
0073056 - 财政年份:2000
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Adaptive Control Algorithms for Adaptive Optics Applications
用于自适应光学应用的自适应控制算法
- 批准号:
9803759 - 财政年份:1998
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Eigenvalue Problems
数学科学:反特征值问题
- 批准号:
9422280 - 财政年份:1995
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Mathematical Sciences: Matrix Differential Equations and Their Applications
数学科学:矩阵微分方程及其应用
- 批准号:
9123448 - 财政年份:1992
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
密集追踪数据动态建模新方法:数值优化算法及样本量设计
- 批准号:32171089
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
动态热力耦合作用下复合材料结构的高阶多尺度模型及其算法研究
- 批准号:11801387
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
网格变形与重叠相结合的运动边界问题数值模拟方法研究
- 批准号:11672324
- 批准年份:2016
- 资助金额:52.0 万元
- 项目类别:面上项目
群智能算法在化工动态系统数值控制中的应用研究
- 批准号:21466008
- 批准年份:2014
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
相似海外基金
CAREER: Theory and Algorithms for Learning with Frozen Pretrained Models
职业:使用冻结的预训练模型进行学习的理论和算法
- 批准号:
2339978 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
XTRIPODS: Algorithms and Machine Learning in Data Intensive Models
XTRIPODS:数据密集型模型中的算法和机器学习
- 批准号:
2342527 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
AF: Small: Communication-Aware Algorithms for Dynamic Allocation of Heterogeneous Resources
AF:小型:用于异构资源动态分配的通信感知算法
- 批准号:
2335187 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant