Experimental and Computational Investigation of Closed Loop Flight Control in the Hawkmoth Manduca Sexta

天蛾天蛾闭环飞行控制的实验与计算研究

基本信息

项目摘要

Dr. Tyson Hedrick will study how animals achieve a variety of stable locomotor behaviors with a limited set of actuators of uncertain performance and a sensory system with inherent and variable delays. Specifically, the flight control of the hawkmoth Manduca sexta will be examined in a closed loop, free flight context using a combination of computational and experimental methods to analyze the system using engineering control theory. Feeding hawkmoths hover in front of the flower from which they draw nectar, and therefore must track the position and orientation of the flower. The flowers from which the hawkmoth feeds also tend to oscillate under the perturbation of a slight breeze or even the downward airflow generated by the moth''s own wings as it hovers near the flower. Thus, the hawkmoth has had to develop an effective tracking behavior, which can be elicited under laboratory conditions where the moth tracks the movements of a mechanically actuated artificial flower. This allows direct experimental manipulation and measurement of both the system input (flower position) and output (moth position) in a biologically relevant whole organism behavior. Furthermore, flower tracking is known to have an optical rather than tactile basis, and optic pathways are subject to large delays of 50 to 150 milliseconds, or 2 to 6 wingbeats. Orientation in flight is also partially sensed via optical pathways and is subject to these same delays. These delays may dominate the function of the controller to the extent that limitations in the neural and sensory systems require damping beyond what would be necessary for the biomechanical system considered separately. The influence of these different factors will be evaluated via extension of a dynamic simulation of the flight of Manduca sexta previously developed; this computational model will be used to evaluate the inferred flight control transfer functions in light of what is physically possible given the moth''s aerodynamics and maximum muscle power output. These results will establish a new system for examining closed loop control in freely behaving animals and will be of interest to researchers seeking to apply control theory to biological systems at a variety of scales. The broader impacts resulting from this proposed research include the exposure of high school and undergraduate students to hands-on, experimental approaches in organismal biology by way of laboratory assistanceships. Results from this research will be made available on the PI''s laboratory web site, presented at national and international conferences, and published in scientific journals. Finally, the results of this research will have applications to the flight and control of micro-air vehicles and other bio-mimentic engineering efforts.
泰森·赫德里克博士将研究动物如何通过一组有限的性能不确定的执行器和具有固有和可变延迟的感觉系统来实现各种稳定的运动行为。具体来说,天蛾 Manduca sexta 的飞行控制将在闭环、自由飞行环境中进行检查,结合计算和实验方法,使用工程控制理论来分析系统。 进食的天蛾盘旋在它们吸取花蜜的花朵前面,因此必须跟踪花朵的位置和方向。天蛾取食的花朵在微风的扰动下,甚至在飞蛾盘旋在花朵附近时其自身翅膀产生的向下气流的扰动下,也会发生振荡。因此,天蛾必须发展出有效的跟踪行为,这种行为可以在实验室条件下引起,天蛾跟踪机械驱动的人造花的运动。这允许在生物学相关的整个有机体行为中直接实验操作和测量系统输入(花位置)和输出(蛾位置)。此外,已知花朵追踪基于光学而不是触觉,并且光学路径会受到 50 至 150 毫秒或 2 至 6 次翅膀拍打的大延迟的影响。 飞行中的方向也部分地通过光学路径感测,并且受到同样的延迟的影响。这些延迟可能会主导控制器的功能,以至于神经和感觉系统的限制需要阻尼超出单独考虑的生物力学系统所需的阻尼。这些不同因素的影响将通过先前开发的天蛾飞行动态模拟的扩展来评估;该计算模型将用于根据飞蛾的空气动力学和最大肌肉功率输出的物理可能性来评估推断的飞行控制传递函数。 这些结果将建立一个新的系统来检查自由行为动物的闭环控制,并将引起寻求将控制理论应用于各种规模的生物系统的研究人员的兴趣。 这项拟议研究产生的更广泛影响包括通过实验室援助让高中生和本科生接触有机生物学的实践实验方法。 这项研究的结果将在 PI 的实验室网站上公布、在国内和国际会议上展示并在科学期刊上发表。最后,这项研究的结果将应用于微型飞行器的飞行和控制以及其他仿生工程工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tyson Hedrick其他文献

Tyson Hedrick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tyson Hedrick', 18)}}的其他基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: The aerodynamic and metabolic costs and benefits of flow interactions in bird flight
合作研究:鸟类飞行中流动相互作用的空气动力学和代谢成本和效益
  • 批准号:
    1930886
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Individual and Group Animal Flight Dynamics
职业:个体和群体动物飞行动力学
  • 批准号:
    1253276
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: Cyborg Insect Networks for Exploration and Mapping (CINEMa)
CPS:协同:协作研究:用于探索和绘图的机器人昆虫网络 (CINEMa)
  • 批准号:
    1239212
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Biological and Engineering Approaches to Reveal the Principles of Flight Control in Hummingbirds
合作研究:整合生物学和工程方法揭示蜂鸟飞行控制原理
  • 批准号:
    1234787
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Robusticity and perturbation compensation in animal flight
动物飞行中的鲁棒性和扰动补偿
  • 批准号:
    0920358
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Postdoctoral Research Fellowship in Biological Informatics for FY 2005
2005财年生物信息学博士后研究奖学金
  • 批准号:
    0434657
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award

相似国自然基金

面向计算密集型应用的新型计算范式及其加速器关键技术
  • 批准号:
    62374108
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
顺层边坡变形调控新结构——让剪让压型锚拉桩的承载机理与计算方法
  • 批准号:
    52378327
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超宽禁带半导体固溶体合金中p型透明导电氧化物材料设计与计算分析
  • 批准号:
    12374074
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
超网驱动的学习型进化计算多模态优化研究
  • 批准号:
    62306225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多精度计算机试验的航空设备多函数型响应质量设计研究
  • 批准号:
    72371128
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

Multi-Scale Experimental and Computational Investigation of Microscale Origins of Ductile Failure
延性破坏微观起源的多尺度实验和计算研究
  • 批准号:
    2334678
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computational, anatomical, and molecular principles of system-wide visual encoding
全系统视觉编码的计算、解剖和分子原理
  • 批准号:
    10676656
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Clinical Translation of Nuclear Export Inhibitor in Metastatic Pancreatic Cancer
核输出抑制剂在转移性胰腺癌中的临床转化
  • 批准号:
    10443040
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Defining the function of Complex I truncating mutations in cancer
定义复合物 I 截短突变在癌症中的功能
  • 批准号:
    10563387
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development Core
开发核心
  • 批准号:
    10747723
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了