CAREER: Scalable Rendering for Visual Realism in Scale-Complex Scenes
职业:在规模复杂的场景中实现视觉真实感的可扩展渲染
基本信息
- 批准号:0644175
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-01 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CAREER: Scalable Rendering for Visual Realism in Scale-Complex ScenesPI: Kavita BalaA fundamental challenge in computer graphics is to create interactive virtual environments that accurately depict the complex natural scenes of the real world. These virtual environments are vital for a wide variety of applications, including e-commerce, education, industrial design and architectural planning, games and movies, safety analysis and virtual training, and cultural heritage. Realistically simulating the visual appearance of the real world is extremely challenging because scenes of interest have complex geometry, material, and lighting interacting across a wide range of physical scales, ranging from millimeter-sized surface bumps to large-scale structure. We call such scenes scale-complex. Current rendering methods are blind to scale, making it infeasible to realistically simulate the complex paths along which light reflects and scatters in such scale-complex scenes. This project develops a novel framework for realistically rendering images of scale-complex scenes. Importantly, the framework supports rich illumination phenomena and rendering effects such as indirect illumination, participating media, subsurface scattering, motion blur, and depth-of-field.For the proposed framework to be scalable, it must perform well even with growing complexity of the scene and of simulated illumination phenomena. This project explores the following new approaches: (a) a unified treatment of all illumination phenomena and rendering effects, (b) novel multiresolution representations coupled with perceptual metrics based on early vision and higher level vision to eliminate computation where it is not visually important, (c) new methods for accurately computing illumination detail as needed, with illumination-driven simplification of geometry and material, and (d) new hybrid CPU/GPU algorithms for interactive performance.
职业:在规模复杂场景中的视觉现实主义的可扩展渲染:计算机图形中的Kavita Balaa基本挑战是创建交互式虚拟环境,以准确描述现实世界中复杂的自然场景。 这些虚拟环境对于各种应用至关重要,包括电子商务,教育,工业设计和建筑计划,游戏和电影,安全分析和虚拟培训以及文化遗产。 现实地模拟现实世界的视觉外观非常具有挑战性,因为感兴趣的场景在各种物理尺度上具有复杂的几何形状,材料和照明相互作用,从毫米大小的表面颠簸到大型结构。我们称此类场景比例复合。 当前的渲染方法对尺度视而不见,这使得在这种比例复杂的场景中现实模拟光反射和散射的复杂路径是不可行的。 该项目为实际渲染比例复合场景的图像开发了一个新颖的框架。重要的是,该框架支持丰富的照明现象和渲染效果,例如间接照明,参与介质,地下散射,运动模糊和景点。为了使所提出的框架具有可扩展性,即使在现场和模拟照明现象的场景和现场的复杂性变得越来越复杂。 This project explores the following new approaches: (a) a unified treatment of all illumination phenomena and rendering effects, (b) novel multiresolution representations coupled with perceptual metrics based on early vision and higher level vision to eliminate computation where it is not visually important, (c) new methods for accurately computing illumination detail as needed, with illumination-driven simplification of geometry and material, and (d) new hybrid互动性能的CPU/GPU算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kavita Bala其他文献
Diffusion Formulation for Heterogeneous Subsurface Scattering
非均匀次表面散射的扩散公式
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
A. Arbree;B. Walter;Kavita Bala - 通讯作者:
Kavita Bala
Detail synthesis for image-based texturing
基于图像的纹理的细节合成
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Ryan M. Ismert;Kavita Bala;D. Greenberg - 通讯作者:
D. Greenberg
Effects of global illumination approximations on material appearance
全局照明近似对材质外观的影响
- DOI:
10.1145/1833349.1778849 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Jaroslav Křivánek;J. Ferwerda;Kavita Bala - 通讯作者:
Kavita Bala
Activation Regression for Continuous Domain Generalization with Applications to Crop Classification
连续域泛化的激活回归及其在作物分类中的应用
- DOI:
10.48550/arxiv.2204.07030 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Samarth Khanna;Bram Wallace;Kavita Bala;B. Hariharan - 通讯作者:
B. Hariharan
Radiance interpolants for interactive scene editing and ray tracing
用于交互式场景编辑和光线追踪的辐射插值
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Kavita Bala - 通讯作者:
Kavita Bala
Kavita Bala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kavita Bala', 18)}}的其他基金
CHS: Medium: Collaborative Research: Physics and Learning Integration Using differentiable rendering
CHS:媒介:协作研究:使用可微渲染的物理和学习集成
- 批准号:
1900783 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CHS: Small: Data-Driven Material Understanding and Decomposition
CHS:小:数据驱动的材料理解和分解
- 批准号:
1617861 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CGV: Medium: Collaborative Research: Understanding Translucency: Physics, Perception, and Computation
CGV:媒介:协作研究:理解半透明性:物理、感知和计算
- 批准号:
1161645 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CPA -G&V: Collaborative Research: Visual Equivalence: a New Foundation for Perceptually-Based Rendering of Complex Scenes
CPA-G
- 批准号:
0811680 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
面向智能网卡的可扩展FPGA包分类技术研究
- 批准号:62372123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向高并发软件的可扩展建模与分析技术研究
- 批准号:62302375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
包含时空维度的可扩展光MIMO解调芯片与均衡器
- 批准号:62335019
- 批准年份:2023
- 资助金额:225.00 万元
- 项目类别:重点项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
- 批准号:62371039
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
- 批准号:
MR/Y011686/1 - 财政年份:2025
- 资助金额:
$ 45万 - 项目类别:
Fellowship
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
- 批准号:
10086990 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Studentship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant