Gravity Wave Sources and Parameterization
重力波源和参数化
基本信息
- 批准号:0632378
- 负责人:
- 金额:$ 43.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-01-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This three-year project will improve the parameterization of subgrid-scale gravity wave effects in global models. Gravity wave forcing of the global-scale mean flow is used to correct common deficiencies in modeled stratospheric circulations: (1) A cold-pole problem in the winter stratosphere that has links to errors in temperature-sensitive ozone chemistry in chemistry-climate models and links to errors in planetary wave propagation and reflection, (2) A delayed onset of easterly winds in the springtime that also affects the propagation of planetary waves and the occurrence of stratospheric warmings in the early spring season, and (3) the lack of a quasibiennial oscillation in the tropical lower stratosphere that also affects planetary wave propagation, stratospheric ozone, and propagation of equatorial waves. In addition to the mean-flow forcing effects of gravity waves on the global scale, other effects are emerging as important that are not yet parameterized in global models. In cirrus clouds, for instance, wave vertical motions control crystal sizes, number densities, precipitation rates, and cloud lifetimes, which in turn can have global-scale radiative and ozone chemistry effects. In the troposphere, upward-propagating gravity waves generated by mature convective storms may reflect from higher altitudes back towards the boundary layer and influence further convective initiation there.There are two essential components to gravity wave forcing parameterizations: (1) the specification of the wave source, and (2) the estimation of the wave dissipation as a function of height. There are several methods for parameterization of the wave dissipation with height in use in global models currently, but no clear way to distinguish between them. The approach in this project focuses on the wave sources, and on constraining those rigorously with observations. This will not only make the parameterizations more realistic, but it may also eventually distinguish between the different dissipation methods. Mountain wave sources have been specifically parameterized in global forecasting and climate models for two decades. Because mountain waves are stationary, their dissipation can only drag the mean flow toward zero wind speed. Mountain wave sources are also limited geographically. Waves from other sources are nonstationary so their dissipation can cause either deceleration or acceleration of the mean flow. The focus in this project is on wave generation by convection. Convection is known to generate waves with a broad range of nonstationary phase speeds and is likely the dominant gravity wave forcing mechanism throughout the tropics and in summer midlatitudes. The intellectual merit of the work crosses traditional boundaries in the atmospheric sciences, using tools of cloud-modeling and precipitation radar observations to understand the origin and nature of small-scale waves generated by convection. Through parallel linear model studies and comparison to existing parameterization methods there will be increased understanding of the essential physics of gravity wave generation. Finally, through collaboration with global modeling groups, parameterization improvements to the subgrid-scale gravity wave forcing and feedbacks in global models will be evaluated. The broader impacts of this work will be advances in understanding of gravity wave generation and gravity wave effects across altitude regions ranging from the top of the boundary layer into the upper atmosphere. In addition to the main goal of improving parameterizations of gravity wave mean-flow forcing in global models, results will also be valuable in cirrus cloud studies, and in studies of convection initiation in the troposphere. The project involves training of graduate student and postdoctoral researchers. Initially, the project will be conducted solely by female researchers, a rare occurrence because females are still under-represented in the atmospheric sciences. The project also begins partnerships with two global climate modeling groups, one in the US and and the other in Europe. While subgrid-scale gravity wave effects are not the primary obstacle to improving global weather forecasting and climate models today, many global modeling groups recognize the importance of raising their model upper boundaries to mesospheric altitudes, and this intensifies the need for improved parameterizations of gravity wave effects.
这个为期三年的项目将改进全球模型中亚网格尺度重力波效应的参数化。全球尺度平均流量的重力波强迫用于纠正平流层环流模型中的常见缺陷:(1)冬季平流层中的冷极问题与化学气候模型中温度敏感的臭氧化学误差有关与行星波传播和反射的误差有关,(2)春季东风的延迟出现,也会影响行星波的传播和平流层变暖的发生。 (3)热带低平流层缺乏准两年一次的振荡,这也会影响行星波传播、平流层臭氧和赤道波的传播。 除了重力波在全球范围内的平均流强迫效应之外,其他尚未在全球模型中参数化的效应也日益重要。例如,在卷云中,波垂直运动控制晶体尺寸、数量密度、降水率和云寿命,这反过来又会产生全球范围的辐射和臭氧化学效应。 在对流层中,成熟对流风暴产生的向上传播的重力波可能从较高高度反射回边界层,并影响那里进一步的对流启动。重力波强迫参数化有两个基本组成部分:(1)波的规范源,以及(2)作为高度函数的波耗散的估计。 目前全球模型中使用的波耗散随高度参数化的方法有多种,但没有明确的方法来区分它们。 该项目的方法侧重于波源,并通过观测严格限制波源。 这不仅会使参数化更加真实,而且最终还可以区分不同的耗散方法。 二十年来,山波源一直在全球预报和气候模型中被具体参数化。 由于山浪是静止的,它们的消散只能将平均气流拖向零风速。山地波源在地理上也受到限制。来自其他来源的波是非平稳的,因此它们的耗散可能导致平均流量减速或加速。 该项目的重点是通过对流产生波浪。 已知对流会产生具有广泛非平稳相速度的波,并且可能是整个热带地区和夏季中纬度地区的主要重力波强迫机制。这项工作的智力价值跨越了大气科学的传统界限,利用云建模和降水雷达观测工具来了解对流产生的小尺度波的起源和性质。通过并行线性模型研究以及与现有参数化方法的比较,将加深对重力波产生的基本物理原理的理解。最后,通过与全球建模小组的合作,将评估全球模型中亚网格尺度重力波强迫和反馈的参数化改进。这项工作的更广泛影响将是加深对从边界层顶部到高层大气的整个海拔区域的重力波产生和重力波效应的理解。除了改进全球模型中重力波平均流强迫参数化的主要目标之外,结果对于卷云研究和对流层中对流起始的研究也很有价值。该项目涉及研究生和博士后研究人员的培训。最初,该项目将仅由女性研究人员进行,这种情况很少见,因为女性在大气科学领域的代表性仍然不足。该项目还开始与两个全球气候建模小组建立合作伙伴关系,一个在美国,另一个在欧洲。虽然亚网格尺度的重力波效应并不是当今改进全球天气预报和气候模型的主要障碍,但许多全球建模小组认识到将模型上限提高到中层高度的重要性,这加剧了改进重力波参数化的需要影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M Joan Alexander其他文献
M Joan Alexander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M Joan Alexander', 18)}}的其他基金
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
- 批准号:
2402729 - 财政年份:2024
- 资助金额:
$ 43.41万 - 项目类别:
Continuing Grant
Collaborative Research: Framework: Improving the Understanding and Representation of Atmospheric Gravity Waves using High-Resolution Observations and Machine Learning
合作研究:框架:利用高分辨率观测和机器学习提高对大气重力波的理解和表示
- 批准号:
2004512 - 财政年份:2020
- 资助金额:
$ 43.41万 - 项目类别:
Standard Grant
Tropical Gravity Waves and Latent Heating: Making the Invisible Visible
热带重力波和潜热:让看不见的东西变得可见
- 批准号:
1829373 - 财政年份:2018
- 资助金额:
$ 43.41万 - 项目类别:
Continuing Grant
Collaborative Research: Investigating Thermal Structure, Dynamics, and Dehydration in the Tropical Tropopause Layer with Fiber Optic Temperature Profiling from Strateole-2 Balloons
合作研究:利用 Strateole-2 气球的光纤温度剖面研究热带对流层顶层的热结构、动力学和脱水
- 批准号:
1642246 - 财政年份:2017
- 资助金额:
$ 43.41万 - 项目类别:
Continuing Grant
Collaborative Research: Tropical waves and their effects on circulation from 3D GPS radio occultation sampling from stratospheric balloons in Strateole-2
合作研究:热带波及其对 Strateole-2 平流层气球 3D GPS 无线电掩星采样的环流影响
- 批准号:
1642644 - 财政年份:2017
- 资助金额:
$ 43.41万 - 项目类别:
Continuing Grant
Examining the Connections between Observed Atmospheric Gravity Waves and Convective Clouds for Improved Climate Simulations
检查观测到的大气重力波和对流云之间的联系以改进气候模拟
- 批准号:
1519271 - 财政年份:2015
- 资助金额:
$ 43.41万 - 项目类别:
Standard Grant
Gravity Waves above Deep Convective Storms: Dynamics and Impacts
深对流风暴上方的重力波:动力学和影响
- 批准号:
1318932 - 财政年份:2013
- 资助金额:
$ 43.41万 - 项目类别:
Continuing Grant
Gravity Wave Sources and Parameterization
重力波源和参数化
- 批准号:
0943506 - 财政年份:2010
- 资助金额:
$ 43.41万 - 项目类别:
Continuing Grant
Gravity Wave Sources and Parameterization
重力波源和参数化
- 批准号:
0234230 - 财政年份:2003
- 资助金额:
$ 43.41万 - 项目类别:
Continuing Grant
Gravity Wave Sources and Parameterization
重力波源和参数化
- 批准号:
9907501 - 财政年份:2000
- 资助金额:
$ 43.41万 - 项目类别:
Continuing Grant
相似国自然基金
台风-海浪作用下考虑多种失效模式的浮式风力机结构可靠度研究
- 批准号:52308507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
- 批准号:32300748
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
黑潮区星载合成孔径雷达海面风和海浪探测研究
- 批准号:42376174
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于气-海-浪-冰区域耦合模式的海浪对南极海冰影响研究
- 批准号:42376237
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
海浪驱动压电钛酸钡陶瓷涂层在船体抗污防腐中的作用机制
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
相似海外基金
Study of r-process nucleosynthesis of gravitational wave sources by means of high sensitivity wide-band near infrared spectroscopy
高灵敏度宽带近红外光谱研究引力波源r过程核合成
- 批准号:
21H04997 - 财政年份:2021
- 资助金额:
$ 43.41万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Properties of Supernova Explosions of First Stars and Connections to Blackhole Formation as Gravitational Wave Sources
第一代恒星超新星爆炸的特性以及与作为引力波源的黑洞形成的联系
- 批准号:
20K04024 - 财政年份:2020
- 资助金额:
$ 43.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study for sources of gravity wave over the Southern Andes and the Antarctic Peninsula
安第斯山脉南部和南极半岛重力波来源研究
- 批准号:
19K23465 - 财政年份:2019
- 资助金额:
$ 43.41万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Three-dimensional simulations of a formation channel of progenitors of the gravitational wave sources
引力波源起源形成通道的三维模拟
- 批准号:
18F18753 - 财政年份:2018
- 资助金额:
$ 43.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Onorbit Hookup of MAXI And NICER for exploring and localizing X-ray couterparts of gravitational wave sources
MAXI 和 NICER 的在轨连接,用于探索和定位引力波源的 X 射线对应物
- 批准号:
17K05402 - 财政年份:2017
- 资助金额:
$ 43.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)