CompBio: Collaborative Research: Development of Effective Gene Selection Algorithms for Microarray Data Analysis

CompBio:合作研究:开发用于微阵列数据分析的有效基因选择算法

基本信息

  • 批准号:
    0621889
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-10-01 至 2010-09-30
  • 项目状态:
    已结题

项目摘要

With the success of the Human Genome Project, a microarray can now potentially handle the genes in an entire genome scale. A typical microarray data set involves a massive number of genes. A dramatic dimension reduction to a much smaller number of significant genes, responsible for specific conditions, can potentially increase the possibility of further biological study and knowledge regarding the roles of specific genes.Any methodology that can improve our recognition of significant genes among a large number of genes, and often a limited set of available experimental results, could have a significant impact on our understanding of diseased and normal states, and eventually on diagnosis, prognosis, and drug design. The method that we propose to investigate here is intended to provide critical information on the roles of genes where the key component of our approach is subspace-based methods, which have demonstrated great success in numerous pattern recognition tasks including efficient classification, clustering, and fast search.The development of effective computer-based algorithms for gene selection is indispensable since it is virtually impossible to rely solely on biological testing due to the enormous complexity of the problems. What is novel and unique in our proposed research is that we seek to find a mathematically rigorous framework that models gene selection problems, with careful consideration of the significance of the biological characteristics of the problem. Utilizing our knowledge and previous results on feature extraction, and by discovering their mathematical relationship to feature selection, efficient and effective nonparametric methods for gene selection will be designed. An important role will be played by the nonnegative matrix factorization in building a mathematically rigorous bridge between feature extraction and feature selection in our proposed research. In the process, we will also explore novel methods for estimating missing values as a preprocessing stage of gene selection based on the alternating least squares and the structured total least norm formulations. All results obtained, the new algorithms and software developed, as well as the new data sets generated and compiled will be made available to the research community, to teaching faculty, and to both graduate and undergraduate students, using existing Web servers at the Georgia Institute of Technology and University of Texas at Dallas.Intellectual Merit: This research will produce methods that will have a great impact on computational microarray analysis. The gene selection and missing value estimation methods developed in this research allow significant reduction in complexity of biological testing due to the initial reduction of the problem dimension, thus substantially improve detailed study of significant genes. The feature selection and feature extraction algorithms developed in this research will be applicable to many other problems where data sets in high dimensional spaces need to be handled efficiently and effectively, such as text processing, facial recognition, finger print classification, iris recognition. The missing value estimation methods designed in this research can also be utilized in recovering missing data such as in collaborative filtering.Broader Impact: The research will enhance advanced theory of computational biology and bioinformatics. The developed techniques will also have potential applications in database management, medical examination and diagnosis, bio-chemical selection, and biological networks. The graduate student involvement in this research will have numerous future benefits. The discovery and research experience of the students will prepare them for productive careers in academia, research labs, and industry in highly important current research areas in bioinformatics.
随着人类基因组计划的成功,微阵列现在可以处理整个基因组规模的基因。典型的微阵列数据集涉及大量基因。将负责特定条件的重要基因的数量大幅减少,可能会增加进一步生物学研究和了解特定基因作用的可能性。任何可以提高我们对大量重要基因的识别的方法基因的序列,以及通常有限的一组可用实验结果,可能会对我们对疾病和正常状态的理解产生重大影响,并最终对诊断、预后和药物设计产生重大影响。我们建议在这里研究的方法旨在提供有关基因作用的关键信息,其中我们方法的关键组成部分是基于子空间的方法,该方法在许多模式识别任务中取得了巨大成功,包括高效分类、聚类和快速识别。开发有效的基于计算机的基因选择算法是必不可少的,因为由于问题的巨大复杂性,实际上不可能仅仅依靠生物测试。我们提出的研究的新颖性和独特之处在于,我们寻求找到一个数学上严格的框架来模拟基因选择问题,并仔细考虑问题的生物学特征的重要性。利用我们在特征提取方面的知识和先前的结果,并通过发现它们与特征选择的数学关系,将设计高效且有效的基因选择非参数方法。在我们提出的研究中,非负矩阵分解在特征提取和特征选择之间建立数学上严格的桥梁方面将发挥重要作用。在此过程中,我们还将探索估计缺失值的新方法,作为基于交替最小二乘和结构化总最小范数公式的基因选择的预处理阶段。获得的所有结果、开发的新算法和软件以及生成和编译的新数据集将使用佐治亚研究所现有的网络服务器提供给研究界、教学人员以及研究生和本科生科技大学和德克萨斯大学达拉斯分校。智力优势:这项研究将产生对计算微阵列分析产生巨大影响的方法。本研究开发的基因选择和缺失值估计方法由于问题维度的初始减少而显着降低了生物测试的复杂性,从而大大提高了对重要基因的详细研究。本研究开发的特征选择和特征提取算法将适用于需要高效处理高维空间中的数据集的许多其他问题,例如文本处理、面部识别、指纹分类、虹膜识别。本研究设计的缺失值估计方法也可用于恢复缺失数据,例如协同过滤。更广泛的影响:该研究将增强计算生物学和生物信息学的先进理论。所开发的技术还将在数据库管理、医学检查和诊断、生化选择和生物网络方面具有潜在的应用。研究生参与这项研究将给未来带来许多好处。学生的发现和研究经验将为他们在学术界、研究实验室和工业界在生物信息学当前非常重要的研究领域中从事富有成效的职业做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haesun Park其他文献

TopicSifter: Interactive Search Space Reduction through Targeted Topic Modeling
TopicSifter:通过有针对性的主题建模减少交互式搜索空间
Command Generation Techniques for a Pin Array Using the SVD and the SNMF
使用 SVD 和 SNMF 的引脚阵列命令生成技术
  • DOI:
    10.3182/20120905-3-hr-2030.00072
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryder C. Winck;Jingu Kim;W. Book;Haesun Park
  • 通讯作者:
    Haesun Park
Structured total least norm method for Toeplitz problems
Toeplitz 问题的结构化总最小范数法
VisIRR: Interactive Visual Information Retrieval and Recommendation for Large-scale Document Data
VisIRR:大规模文档数据的交互式视觉信息检索和推荐
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Choo;C. Lee;Edward Clarkson;Zhicheng Liu;Hanseung Lee;Duen Horng Chau;Fuxin Li;R. Kannan;Charles D. Stolper;D. Inouye;Nishant A. Mehta;H. Ouyang;Subhojit Som;Ale;er G. Gray;er;J. Stasko;Haesun Park
  • 通讯作者:
    Haesun Park
Surface analysis of sequential semi-solvent vapor impact (SAVI) for studying microstructural arrangements of poly(lactide-co-glycolide) microparticles.
连续半溶剂蒸气冲击 (SAVI) 的表面分析,用于研究聚丙交酯乙交酯微粒的微观结构排列。

Haesun Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haesun Park', 18)}}的其他基金

Collaborative Research: OAC Core: Robust, Scalable, and Practical Low Rank Approximation
合作研究:OAC 核心:稳健、可扩展且实用的低阶近似
  • 批准号:
    2106738
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SI2-SSE: Collaborative Research: High Performance Low Rank Approximation for Scalable Data Analytics
SI2-SSE:协作研究:可扩展数据分析的高性能低秩近似
  • 批准号:
    1642410
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: New Representations of Probability Distributions to Improve Machine Learning --- A Unified Kernel Embedding Framework for Distributions
职业:改进机器学习的概率分布的新表示——统一的分布内核嵌入框架
  • 批准号:
    1350983
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
EAGER: Hierarchical Topic Modeling by Nonnegative Matrix Factorization for Interactive Multi-scale Analysis of Text Data
EAGER:通过非负矩阵分解进行分层主题建模,用于文本数据的交互式多尺度分析
  • 批准号:
    1348152
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Fast and Accurate Nonnegative Tensor Decompositions: Algorithms and Software
EAGER:快速准确的非负张量分解:算法和软件
  • 批准号:
    0956517
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FODAVA-Lead: Dimension Reduction and Data Reduction: Foundations for Visualization
FODAVA-Lead:降维和数据缩减:可视化的基础
  • 批准号:
    0808863
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
SGER: Effective Network Anomaly Detection Based on Adaptive Machine Learning
SGER:基于自适应机器学习的有效网络异常检测
  • 批准号:
    0715342
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732318
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Greedy Approximations with Nonsubmodular Potential Functions
协作研究:具有非子模势函数的贪婪近似
  • 批准号:
    0728812
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Special Meeting: Workshop on Future Direction in Numerical Algorithms and Optimization
特别会议:数值算法与优化未来方向研讨会
  • 批准号:
    0633793
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234520
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242365
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Project Pythia and Pangeo: Building an inclusive geoscience community through accessible, reusable, and reproducible workflows
合作研究:GEO OSE 第 2 轨道:Pythia 和 Pangeo 项目:通过可访问、可重用和可重复的工作流程构建包容性的地球科学社区
  • 批准号:
    2324302
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了