Modeling Autoregulation and Blood Flow in the Cerebral Vasculature
脑血管系统的自动调节和血流建模
基本信息
- 批准号:0616597
- 负责人:
- 金额:$ 22.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-15 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cerebral autoregulation is one of the most critical control systems in the body, as a constant tissue perfusion is necessary for proper functioning of the brain. As a response to changes in blood pressure, this control system modulates cardiovascular parameters to maintain a constant cerebral blood flow. Transcranial Doppler ultrasound measurements are routinely used to measure blood flow velocity in the middle cerebral arteries, one of the largest suppliers of blood to the brain. These measurements are then used to estimate blood flow and assess efficacy of cerebral autoregulation. However, these measurements do not currently provide reliable indicators for early diagnosis of potential impairments in the cerebral arteries, as they lack the necessary accuracy. One problem from basing the estimates derived from measurements is the questionable assumption that regulation only influences the diameter of microvasculature, while the diameter of larger vessels, such as the middle cerebral artery, remains constant. It is now clear that the large arteries are compliant suggesting that the diameter of the middle cerebral artery can indeed change in response to variations in pulsatility. In addition, estimates derived from measurements do not account for topological variations in network of cerebral arteries, such as the main distribution system, the circle of Willis. These questions will be studied using a new one-dimensional fluid dynamic model of the circle of Willis. Geometric data for this model will be obtained from magnetic resonance angiographs. To solve these equations, new numerical methods will be used. Viscoelastic equations describing the compliance of the vascular wall will be introduced and the effects of including non-Newtonian flow will be studied. Additionally, the effects of curvature of the vessel topology will be estimated. In particular, the internal carotid artery, curves about 180 degrees from when it enters the scull to it is attached to the circle of Willis. To validate this model, computed results will be compared with measurements of cerebral blood flow and network topology. The model will be used to predict effects of changes in the topology as well as changes in outflow boundary conditions. For example, plan to study the effects on distribution of blood flow in response to changes in boundary conditions and compare this with changes in diameters of the proximal vessels. Furthermore, we plan to study changes between healthy subjects and in elderly DM patients. Mathematical models have long been used to study fluid dynamic properties of arteries, however no studies have used this approach to design patient specific models to predict CBF and cerebral autoregulation. Cerebral autoregulation is a critical control system in the body, as constant tissue perfusion is necessary for proper functioning of the brain. In response to changes in blood pressure, this control system modulates cardiovascular parameters to maintain a constant cerebral blood flow. Impairments in cerebral autoregulation have been observed in patients with type II diabetes and are associated with an increased risk of stroke. Ultrasound measurements are routinely used to measure blood flow velocity in the cerebral arteries, the largest suppliers of blood to the brain. These measurements are then used to estimate cerebral blood flow and assess efficacy of cerebral autoregulation. One problem is the questionable assumption that regulation only influences the diameter of the microvasculature, while the diameter of larger vessels, such as the middle cerebral artery, remains constant. It is now clear that the large arteries are compliant suggesting that the diameter of middle cerebral artery can indeed change in response to variations in pulsatility. In addition, estimates derived from measurements do not account for topological variations in network of cerebral arteries, such as the main distribution system, the circle of Willis. These facts suggest that there is a need for development of more advanced methods to estimate cerebral blood flow. In this study we propose to combine physiological data analysis with mathematical fluid dynamic modeling to predict cerebral blood in healthy and diabetic patients. Mathematical models have long been used to study fluid dynamic properties of arteries, however no studies have used this approach to design patient specific models to predict cerebral blood flow. Modeling detailed hemodynamics allows us to develop hypotheses that can predict mechanisms that underlie regulatory failure. The proposed model and new numerical methods for fluid dynamics models with time dependent boundary conditions will be a considerable contribution to applied mathematics and biological sciences applications. Students, who will be doing research in this area, will have skills and knowledge in applied and computational mathematics, and physiology. Such professionals are in great demand.
大脑自动调节是体内最关键的控制系统之一,因为持续的组织灌注对于大脑的正常运作是必要的。作为对血压变化的响应,该控制系统调节心血管参数以维持恒定的脑血流量。经颅多普勒超声测量通常用于测量大脑中动脉的血流速度,大脑中动脉是大脑最大的血液供应者之一。然后使用这些测量值来估计血流量并评估大脑自动调节的功效。然而,这些测量目前并不能为脑动脉潜在损伤的早期诊断提供可靠的指标,因为它们缺乏必要的准确性。基于测量得出的估计的一个问题是一种可疑的假设,即调节仅影响微脉管系统的直径,而较大血管(例如大脑中动脉)的直径保持不变。现在很清楚,大动脉是顺应的,这表明大脑中动脉的直径确实可以响应搏动的变化而变化。此外,从测量得出的估计值并没有考虑脑动脉网络的拓扑变化,例如主要的分布系统,威利斯环。 这些问题将使用威利斯环的新一维流体动力学模型进行研究。 该模型的几何数据将从磁共振血管造影中获得。为了求解这些方程,将使用新的数值方法。 将引入描述血管壁顺应性的粘弹性方程,并研究包括非牛顿流动的影响。 此外,还将估计船舶拓扑曲率的影响。特别是颈内动脉,从进入双桨到附着在威利斯环上,弯曲约180度。为了验证该模型,计算结果将与脑血流量和网络拓扑的测量结果进行比较。该模型将用于预测拓扑变化以及流出边界条件变化的影响。例如,计划研究边界条件变化对血流分布的影响,并将其与近端血管直径的变化进行比较。此外,我们计划研究健康受试者和老年糖尿病患者之间的变化。数学模型长期以来一直用于研究动脉的流体动力学特性,但没有研究使用这种方法来设计患者特定模型来预测 CBF 和大脑自动调节。大脑自动调节是体内的一个关键控制系统,因为持续的组织灌注对于大脑的正常运作是必要的。为了响应血压的变化,该控制系统调节心血管参数以维持恒定的脑血流量。在 II 型糖尿病患者中观察到大脑自动调节受损,并且与中风风险增加相关。超声波测量通常用于测量脑动脉的血流速度,脑动脉是大脑最大的血液供应者。然后使用这些测量值来估计脑血流量并评估脑自动调节的功效。一个问题是一种可疑的假设,即调节仅影响微脉管系统的直径,而较大血管(例如大脑中动脉)的直径保持不变。现在很清楚,大动脉是顺应的,这表明大脑中动脉的直径确实可以响应搏动的变化而变化。此外,从测量得出的估计值并没有考虑脑动脉网络的拓扑变化,例如主要的分布系统,威利斯环。这些事实表明需要开发更先进的方法来估计脑血流量。在这项研究中,我们建议将生理数据分析与数学流体动力学模型相结合来预测健康和糖尿病患者的脑血。数学模型长期以来一直被用来研究动脉的流体动力学特性,但是没有研究使用这种方法来设计患者特定的模型来预测脑血流量。对详细的血流动力学建模使我们能够提出可以预测监管失败的机制的假设。所提出的模型和具有时间相关边界条件的流体动力学模型的新数值方法将对应用数学和生物科学应用做出巨大贡献。 将在该领域进行研究的学生将拥有应用和计算数学以及生理学方面的技能和知识。此类专业人员的需求量很大。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mette Olufsen其他文献
Post-processing of coronary and myocardial spatial data
冠状动脉和心肌空间数据的后处理
- DOI:
10.5603/cj.a2018.0109 - 发表时间:
2022-07-29 - 期刊:
- 影响因子:2.9
- 作者:
Jay Aodh Mackenzie;Megan Jeanne Miller;Nicholas Hill;Mette Olufsen - 通讯作者:
Mette Olufsen
Mette Olufsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mette Olufsen', 18)}}的其他基金
REU Site: DRUMS Directed Research for Undergraduates in Math and Statistics
REU 网站:DRUMS 为数学和统计学本科生指导的研究
- 批准号:
2349611 - 财政年份:2024
- 资助金额:
$ 22.11万 - 项目类别:
Continuing Grant
REU Site: Directed Research for Undergraduates in Math and Statistics
REU 网站:数学和统计学本科生定向研究
- 批准号:
2051010 - 财政年份:2021
- 资助金额:
$ 22.11万 - 项目类别:
Standard Grant
Remodeling of Pulmonary Cardiovascular Networks in the Presence of Hypertension
高血压时肺心血管网络的重塑
- 批准号:
1615820 - 财政年份:2016
- 资助金额:
$ 22.11万 - 项目类别:
Standard Grant
Remodeling of Pulmonary Cardiovascular Networks in the Presence of Hypertension
高血压时肺心血管网络的重塑
- 批准号:
1615820 - 财政年份:2016
- 资助金额:
$ 22.11万 - 项目类别:
Standard Grant
Arterial wall viscoelasticity and cardiovascular networks
动脉壁粘弹性和心血管网络
- 批准号:
1122424 - 财政年份:2011
- 资助金额:
$ 22.11万 - 项目类别:
Standard Grant
Modeling Autonomic Regulation of the Cardiovascular System
模拟心血管系统的自主调节
- 批准号:
1022688 - 财政年份:2010
- 资助金额:
$ 22.11万 - 项目类别:
Standard Grant
US Austria-Denmark Cooperative Research: Modeling and Control of the Cardiovascular-Respiratory System
美国奥地利-丹麦合作研究:心血管-呼吸系统的建模与控制
- 批准号:
0437037 - 财政年份:2004
- 资助金额:
$ 22.11万 - 项目类别:
Standard Grant
相似国自然基金
新型纳米酶通过调控内皮ASK1/p38 MAPK/MMP-9通路改善缺血性脑卒中后脑血流自动调节功能的机制研究
- 批准号:82301464
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
畦田水流对流量调节的响应规律及畦灌自动控制机制
- 批准号:52309048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
远隔缺血适应通过调控星形胶质细胞PDGF-CC/PDGFRα/p38 MAPK通路改善tPA静脉溶栓后脑血流自动调节功能的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
面向智慧教室的学习环境适切性自动感知与动态调节研究
- 批准号:62277026
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
双积分视场单元共空间自动调节系统的研究
- 批准号:
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
相似海外基金
Electroencephalographic signatures of dysfunctional cerebrovascular autoregulation as biomarkers of brain injury in aneurysmal subarachnoid hemorrhage (SAH)
脑血管自动调节功能障碍的脑电图特征作为动脉瘤性蛛网膜下腔出血(SAH)脑损伤的生物标志物
- 批准号:
10667162 - 财政年份:2023
- 资助金额:
$ 22.11万 - 项目类别:
Cerebral Autoregulation, Metabolic derangement, and Edema in Encephalopathy Outcome (CAMEEO)
脑病结果中的大脑自动调节、代谢紊乱和水肿 (CAMEEO)
- 批准号:
10591879 - 财政年份:2023
- 资助金额:
$ 22.11万 - 项目类别:
Mapping single nephron glomerular filtration rate with mechanisms of autoregulation in the kidney using magnetic resonance imaging
使用磁共振成像绘制单肾单位肾小球滤过率与肾脏自动调节机制
- 批准号:
10732632 - 财政年份:2023
- 资助金额:
$ 22.11万 - 项目类别:
Calcium-dependent autoregulation of vasopressin neurons in a rodent model of heart failure.
心力衰竭啮齿动物模型中加压素神经元的钙依赖性自动调节。
- 批准号:
10644746 - 财政年份:2023
- 资助金额:
$ 22.11万 - 项目类别:
Noninvasive monitoring of cerebrovascular autoregulation during and after endovascular therapy for acute ischemic stroke
急性缺血性卒中血管内治疗期间和之后脑血管自动调节的无创监测
- 批准号:
10668021 - 财政年份:2023
- 资助金额:
$ 22.11万 - 项目类别: