Remodeling of Pulmonary Cardiovascular Networks in the Presence of Hypertension

高血压时肺心血管网络的重塑

基本信息

  • 批准号:
    1615820
  • 负责人:
  • 金额:
    $ 43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The research team will develop mathematical and computational models for the study of pulmonary hypertension. This is a rare but rapidly progressing cardiovascular disease with a high mortality rate. Pulmonary hypertension involves both elevated blood pressure and changes in vessel wall stiffness, and thickness within the pulmonary circulation. These issues worsen with the severity of the disease. Diagnostic disease categories are associated with different parts of the pulmonary circulation network, yet pinpointing locations where the disease initiates is challenging. Models will be developed in conjunction with the use of experimental data provided by collaborators. This data will be obtained from non-invasive imaging of vascular blood flow and vessel network structure, and from invasive measurements of blood pressure in pulmonary vessels in mice and humans obtained via catheterization. Effects of the heart chambers, large vessels, small vessel networks and their interactions will be captured based on modeling and methodological approaches from fluid mechanics, solid mechanics, network analysis, inverse problems and parameter estimation. The proposed pulmonary cardiovascular model has potential to be incorporated into diagnostic protocols predicting pressure using non-invasive measurements to reduce the number of the invasive follow-up procedures, and to serve as a vital component for identifying signatures associated with disease diagnostic categories and the degree of disease progression. The overall project also provides a variety of opportunities for integrated training of a postdoc, and graduate and undergraduate students, in data-driven biomedical research.System-level, one-dimensional mathematical and computational fluid dynamics models of the pulmonary circulation will be developed. These models will include the right ventricle, left atrium, the large and small pulmonary arteries and veins, and account for alterations in the system components due to pulmonary hypertension. A physiologically based arterial and venous wall model that accounts for collagen and elastin content and that can also capture remodeling of wall constituents in response to pulmonary hypertension will be designed. This model will be rooted in nonlinear elasticity theory and will yield a more robust pressure-area relation that can be integrated within the fluid dynamics model, and linearized to facilitate the transition from large to small vessels. A second physiologically based right ventricle model combining ideas from simple elastance functions and single-fiber models will also be provided. This model will enable prediction of elastance as a function of right ventricle thickness. The analysis will focus on the pulmonary circulation, but impacts on modeling systemic circulation in a comprehensive closed loop model will also be considered. The models developed in these two aims will be used to simulate and identify flow and pressure waveforms that predict features associated with disease progression and, via sensitivity analysis and parameter estimation, to render the model patient-specific. With these innovations it will be possible to use the one dimensional system level model combined with pulmonary arterial blood pressure from non-invasive measurements of flow to assess disease progression associated with pulmonary hypertension while also reducing the number of invasive measurements.
研究小组将开发用于肺动脉高压研究的数学和计算模型。这是一种罕见但进展迅速的心血管疾病,死亡率很高。 肺动脉高压涉及血压升高以及肺循环内血管壁硬度和厚度的变化。这些问题随着疾病的严重程度而恶化。诊断疾病类别与肺循环网络的不同部分相关,但精确定位疾病起始位置具有挑战性。模型将结合合作者提供的实验数据来开发。这些数据将从血管血流和血管网络结构的非侵入性成像以及通过导管插入术获得的小鼠和人类肺血管血压的侵入性测量中获得。 基于流体力学、固体力学、网络分析、反问题和参数估计的建模和方法,将捕获心室、大血管、小血管网络及其相互作用的影响。所提出的肺心血管模型有可能被纳入使用非侵入性测量预测压力的诊断方案中,以减少侵入性后续程序的数量,并作为识别与疾病诊断类别和程度相关的特征的重要组成部分疾病进展。 整个项目还为博士后、研究生和本科生在数据驱动的生物医学研究方面的综合培训提供了各种机会。将开发肺循环的系统级、一维数学和计算流体动力学模型。这些模型将包括右心室、左心房、大肺动脉和小肺动脉和静脉,并解释由于肺动脉高压导致的系统组件的变化。将设计基于生理学的动脉和静脉壁模型,该模型考虑胶原蛋白和弹性蛋白含量,并且还可以捕获响应肺动脉高压的壁成分的重塑。该模型将植根于非线性弹性理论,并将产生更稳健的压力-面积关系,可以集成到流体动力学模型中,并进行线性化以促进从大型容器到小型容器的过渡。 还将提供第二个基于生理学的右心室模型,该模型结合了简单弹性函数和单纤维模型的思想。该模型将能够预测弹性作为右心室厚度的函数。分析将重点关注肺循环,但也将考虑对综合闭环模型中体循环建模的影响。在这两个目标中开发的模型将用于模拟和识别流量和压力波形,预测与疾病进展相关的特征,并通过敏感性分析和参数估计,使模型针对患者特定。 通过这些创新,将有可能使用一维系统级模型与非侵入性流量测量中的肺动脉血压相结合,来评估与肺动脉高压相关的疾病进展,同时减少侵入性测量的数量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mette Olufsen其他文献

Post-processing of coronary and myocardial spatial data
冠状动脉和心肌空间数据的后处理
  • DOI:
    10.5603/cj.a2018.0109
  • 发表时间:
    2022-07-29
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Jay Aodh Mackenzie;Megan Jeanne Miller;Nicholas Hill;Mette Olufsen
  • 通讯作者:
    Mette Olufsen

Mette Olufsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mette Olufsen', 18)}}的其他基金

REU Site: DRUMS Directed Research for Undergraduates in Math and Statistics
REU 网站:DRUMS 为数学和统计学本科生指导的研究
  • 批准号:
    2349611
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
REU Site: Directed Research for Undergraduates in Math and Statistics
REU 网站:数学和统计学本科生定向研究
  • 批准号:
    2051010
  • 财政年份:
    2021
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Arterial wall viscoelasticity and cardiovascular networks
动脉壁粘弹性和心血管网络
  • 批准号:
    1122424
  • 财政年份:
    2011
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Modeling Autonomic Regulation of the Cardiovascular System
模拟心血管系统的自主调节
  • 批准号:
    1022688
  • 财政年份:
    2010
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Modeling Autoregulation and Blood Flow in the Cerebral Vasculature
脑血管系统的自动调节和血流建模
  • 批准号:
    0616597
  • 财政年份:
    2006
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
US Austria-Denmark Cooperative Research: Modeling and Control of the Cardiovascular-Respiratory System
美国奥地利-丹麦合作研究:心血管-呼吸系统的建模与控制
  • 批准号:
    0437037
  • 财政年份:
    2004
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant

相似国自然基金

Slit2-Robo信号通路负性调控NETs形成在烟草相关慢性肺部炎症中的作用与机制
  • 批准号:
    82360012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
DHPS介导多胺代谢重编程调控eIF5A的Hyp化驱动cDC2Bs促炎转化在烟草相关的肺部慢性炎症中的作用与机制
  • 批准号:
    82370049
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于生理机制和群体模型引导重症肺部感染患者静脉联合雾化吸入多粘菌素B的精准用药研究
  • 批准号:
    82373966
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
罗汉果皂苷V通过肺部菌群调节Th17/Treg平衡缓解鸡舍细颗粒物诱导肉鸡肺部炎症损伤的机制研究
  • 批准号:
    32372935
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向肺部疾病识别的噪声标签学习方法研究
  • 批准号:
    62302032
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Biomarker Discovery in Portopulmonary Hypertension
门脉性肺动脉高压的生物标志物发现
  • 批准号:
    10663708
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
ARID1a and Chromatin Landscape in Pulmonary Vascular Disease
ARID1a 和肺血管疾病中的染色质景观
  • 批准号:
    10727052
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
CardioPulmonary Vascular Biology COBRE
心肺血管生物学 COBRE
  • 批准号:
    10854140
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
  • 批准号:
    10734008
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
Biomarker Discovery in Portopulmonary Hypertension
门脉性肺动脉高压的生物标志物发现
  • 批准号:
    10663708
  • 财政年份:
    2023
  • 资助金额:
    $ 43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了