BIC: Probabilistic Neural Computation: Models and Applications in Robotics and Brain-Machine Interfaces
BIC:概率神经计算:机器人和脑机接口中的模型和应用
基本信息
- 批准号:0622252
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most outstanding problems in science today is how the activities of the ten billion or so neurons in the human brain allow a person to perceive, think, and act in an intelligent and adaptive manner. Knowing the answer to this question would allow the design of radically new technologies with adaptive capabilities that would far outstrip the capabilities of technologies existing today. Recent behavioral and neurobiological experiments have suggested that the brain may rely on probabilistic principles for perception, action, and learning. The goal of the proposed research project is to develop a rigorous probabilistic framework for neural computation and to test the resulting models in two ways: (1) in collaborative biological experiments, and (2) in applications involving robotics and brain-machine interfaces. Our specific research goals include:1. Probabilistic Models of Neural Computation: We will develop new models of neural computation based on treating the problems of sensory information processing and action selection as probabilistic inference problems. We will investigate how biological models such as networks of integrate-and-fire neurons can represent probability distributions and how the propagation of neural activities in such networks can implement algorithms for probabilistic (Bayesian) inference of unknown quantities. We will also explore the connections between well-known neurobiological rules governing synaptic plasticity and statistically-derived learning rules.2. Experimental Validation using Electrocorticographic Studies: Our models of Bayesian inference will be tested by co-PI Ojemann's group in experiments involving electrocorticographic (ECoG) signals recorded from the human brain in consenting patients being monitored in the days prior to brain surgery. Experiments will focus on testing the predictions of our models in tasks involving visual discrimination, recognition, and sensorimotor integration. Results from the experiments will be used to refine existing models and develop new probabilistic models inspired by neurobiological data.3. Applications in Probabilistic Robotics and Brain-Machine Interfaces: We will test the robustness of our probabilistic models by implementing the corresponding algorithms on an existing humanoid robot in PI Rao's laboratory. We will be focusing primarily on sensorimotor integration and inference of actions for stable control of movements. Simultaneously, we will explore the applicability of our probabilistic models to brain-machine interfaces. The specific goals are to control a cursor on a computer screen and control a 4-degrees-of-freedom robotic arm by probabilistically inferring real and imagined movements from ECoG signals in real time.The educational component of the project involves interdisciplinary training for one graduate student, research experiences for undergraduates, and curriculum development in the form of a new graduate level course on brain-machine interfaces.Intellectual Merit: The proposed research represents one of the first interdisciplinary efforts to develop and test a rigorous probabilistic framework for understanding neuronal computation in the brain. Also novel is the application of neurally-inspired probabilistic models to robotics and brain-machine interfaces, two areas that could benefit tremendously from the robustness and adaptability afforded by such models.Broader Impact: If successful, this research will lead to a new understanding of computation in the brain, offering unique insights into the mechanisms underlying human behavior and cognition. The application to brain-machine interfaces could dramatically improve the quality of life of paralyzed and disabled patients. The grant will enable the training of a graduate student in a multidisciplinary environment. Promising undergraduates, including students from underrepresented groups, will be paired with graduate students, providing valuable research experience for the undergraduates and mentoring experience for graduate students preparing for industrial and academic careers.
当今科学中最突出的问题之一是人脑中大约一百亿个神经元的活动如何使人以智能和适应性的方式感知、思考和行动。知道这个问题的答案将有助于设计出具有自适应能力的全新技术,这些技术将远远超过当今现有技术的能力。最近的行为和神经生物学实验表明,大脑可能依赖概率原理进行感知、行动和学习。拟议研究项目的目标是开发严格的神经计算概率框架,并以两种方式测试所得模型:(1)在协作生物实验中,以及(2)在涉及机器人和脑机接口的应用中。我们的具体研究目标包括: 1.神经计算的概率模型:我们将基于将感觉信息处理和动作选择问题视为概率推理问题来开发新的神经计算模型。我们将研究诸如积分激发神经元网络之类的生物模型如何表示概率分布,以及此类网络中神经活动的传播如何实现未知量的概率(贝叶斯)推理算法。我们还将探讨控制突触可塑性的众所周知的神经生物学规则与统计推导的学习规则之间的联系。2.使用皮层电图研究进行实验验证:我们的贝叶斯推理模型将由联合 PI Ojemann 的小组在实验中进行测试,该实验涉及从人脑记录的皮层电图 (ECoG) 信号,这些信号是在脑部手术前几天接受监测的同意患者的大脑中记录的。实验将侧重于测试我们的模型在涉及视觉辨别、识别和感觉运动整合的任务中的预测。实验结果将用于改进现有模型并开发受神经生物学数据启发的新概率模型。3.概率机器人和脑机接口中的应用:我们将通过在 PI Rao 实验室现有的人形机器人上实施相应的算法来测试概率模型的稳健性。我们将主要关注感觉运动整合和动作推理,以实现稳定的运动控制。同时,我们将探索概率模型在脑机接口中的适用性。具体目标是通过根据 ECoG 信号实时概率推断真实和想象的运动来控制计算机屏幕上的光标并控制 4 自由度机械臂。该项目的教育部分包括对一名毕业生进行跨学科培训学生、本科生的研究经验以及以新的脑机接口研究生水平课程形式进行的课程开发。智力优点:拟议的研究代表了开发和测试严格的概率框架的第一个跨学科努力之一用于理解大脑中的神经元计算。同样新颖的是神经启发的概率模型在机器人和脑机接口中的应用,这两个领域可以从此类模型提供的鲁棒性和适应性中受益匪浅。 更广泛的影响:如果成功,这项研究将带来新的理解大脑中的计算,为人类行为和认知的潜在机制提供独特的见解。脑机接口的应用可以极大地改善瘫痪和残疾患者的生活质量。这笔赠款将使研究生能够在多学科环境中接受培训。有前途的本科生,包括来自代表性不足群体的学生,将与研究生配对,为本科生提供宝贵的研究经验,并为准备工业和学术职业的研究生提供指导经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajesh Rao其他文献
Amorphous/crystalline silicon heterojunction solar cells via Remote plasma chemical vapor deposition: Influence of hydrogen dilution, RF power, and sample Z-height position
通过远程等离子体化学气相沉积的非晶/晶体硅异质结太阳能电池:氢气稀释、射频功率和样品 Z 高度位置的影响
- DOI:
10.1109/pvsc.2013.6744373 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
E. Onyegam;W. James;Rajesh Rao;Leo Mathew;M. Hilali;Sanjay K. Banerjee - 通讯作者:
Sanjay K. Banerjee
Surgery: Is There a Difference Between Men and Women? Postoperative Complications Following Orthopedic Spine
手术:男性和女性之间有区别吗?
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
J. Heyer;Na Cao;R. Amdur;Rajesh Rao - 通讯作者:
Rajesh Rao
Rajesh Rao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajesh Rao', 18)}}的其他基金
RI: Small: Probabilistic Goal-Based Imitation Learning
RI:小:基于概率目标的模仿学习
- 批准号:
1318733 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
NSF Engineering Research Center for Sensorimotor Neural Engineering
NSF 感觉运动神经工程工程研究中心
- 批准号:
1028725 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Electrocorticographic Brain-Machine Interfaces for Communication and Prosthetic Control
用于通信和假肢控制的皮质电脑机接口
- 批准号:
0930908 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Exploring the Neural Dynamics of Cognition through Human Electrocorticography
通过人体皮层电图探索认知的神经动力学
- 批准号:
0642848 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Probabilistic Imitation Learning in Infants and Robots
婴儿和机器人的概率模仿学习
- 批准号:
0413335 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Neurally Inspired Active Vision: Theory, Models, and Applications in Mobile Robotics
职业:神经启发主动视觉:移动机器人的理论、模型和应用
- 批准号:
0133592 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Adaptive Neurally-Inspired Computing: Models, Algorithms, and Silicon-Based Architectures
自适应神经启发计算:模型、算法和基于硅的架构
- 批准号:
0130705 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
自由概率论方法在量子结构理论研究中的应用
- 批准号:12171425
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
第七届全国概率论年会
- 批准号:
- 批准年份:2020
- 资助金额:15 万元
- 项目类别:专项基金项目
大学公共基础课程背后的数学故事的编撰与推广
- 批准号:11926408
- 批准年份:2019
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于算子理论的广义概率论框架下的量子关联研究
- 批准号:11901421
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
量子相干性的定量刻画及与关联、操控的联系
- 批准号:11701259
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311296 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Neural circuit mechanisms of affective probabilistic learning
情感概率学习的神经回路机制
- 批准号:
10744542 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaboration Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133851 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Data-Efficient Medical Image Classification using Learned Uncertainty
使用习得不确定性进行数据高效的医学图像分类
- 批准号:
486617 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship Programs