III: Medium: Collaborative Research: Deep Generative Modeling for Urban and Archaeological Recovery

III:媒介:协作研究:城市和考古恢复的深度生成模型

基本信息

  • 批准号:
    2107096
  • 负责人:
  • 金额:
    $ 83.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Modeling and understanding the evolution of urbanization over the course of human history elucidates a key aspect of human civilization, and can significantly help stakeholders today make better informed decisions for future urban development. However, the modeling of current and past urban spaces remains extremely challenging and a rigorous comparison between ancient and modern urban form is lacking. In this project, the team will provide an artificial intelligence based framework for discovering a relatively complex urban model (walls, corners, rooms, orientation, and built area clusters) from a sparse number of remote sensing and field observations. As opposed to cities present today, modeling a historical urban site is fundamentally limited to sparse (and few) data observations because most of the structures have been eroded or destroyed. The research team will provide a preliminary cyberinfrastructure, pursue 3D re-creations of historical sites, create a feature- and time-based urban taxonomy of ancient sites from the late Prehispanic and Colonial period Andes and the Bronze/Iron Age South Caucasus periods, while leveraging the NEH and American Council of Learned Societies funded GeoPACHA web platform for result dissemination. Moreover, the project spans three major US universities and five departments, led by five experienced senior researchers and a team of at least six multidisciplinary graduate students, as well as additional undergraduates, who will produce publications in top tier venues, conference workshops, as well as theses and PhD dissertations.To assist with modeling and understanding the evolution of urbanization over the course of human history, this project seeks a computational methodology for discovering a relatively complex urban model from a sparse number of observations. While performing a dense acquisition of a current city implies focusing on sensor deployment and on big data issues, modeling a historical urban site is fundamentally limited to sparse (and few) data observations because most of the structures have been eroded or destroyed. Inferencing approaches show significant promise, but they struggle in a situation of relatively sparse data and obscured structure. As a first domain application, the team will assist computational archaeologists having relatively sparse data but of an underlying structured site. First, they will solve a set cover problem to determine a discrete set of atomic elements and rules that are minimal yet sufficient to span the sparse data. Second, they will use these atomic elements and rules to produce sufficient data samples for training deep networks in a self-supervised manner in order to learn how to perform segmentation, classification, and completion. Finally, they will use the learned representations to model archaeological sites resulting in reconstructions, semantic understandings, and site taxonomies, for instance. Further, the team anticipates that the developed models can be re-tooled to assist with other domains also limited to sparse observations of an underlying structured region.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对人类历史进程中城市化的演变进行建模和理解可以阐明人类文明的一个关键方面,并可以极大地帮助当今的利益相关者为未来的城市发展做出更明智的决策。然而,当前和过去城市空间的建模仍然极具挑战性,并且缺乏古代和现代城市形态之间的严格比较。在这个项目中,该团队将提供一个基于人工智能的框架,用于从少量的遥感和现场观测中发现相对复杂的城市模型(墙壁、角落、房间、方向和建筑区域集群)。与当今的城市相反,对历史城市遗址进行建模从根本上仅限于稀疏(且很少)的数据观察,因为大多数结构已被侵蚀或破坏。研究团队将提供初步的网络基础设施,对历史遗址进行 3D 重建,对前西班牙晚期和殖民时期安第斯山脉以及青铜/铁器时代南高加索时期的古代遗址创建基于特征和时间的城市分类法,同时利用 NEH 和美国学术团体理事会资助的 GeoPACHA 网络平台来传播结果。此外,该项目横跨美国三所主要大学和五个院系,由五名经验丰富的高级研究人员和至少六名多学科研究生以及其他本科生组成的团队领导,他们将在顶级场馆、会议研讨会以及为了帮助建模和理解人类历史进程中城市化的演变,该项目寻求一种计算方法,从少量的观测中发现相对复杂的城市模型。虽然对当前城市进行密集采集意味着重点关注传感器部署和大数据问题,但对历史城市遗址进行建模从根本上仅限于稀疏(且很少)的数据观察,因为大多数结构已被侵蚀或破坏。推理方法显示出巨大的前景,但它们在数据相对稀疏和结构模糊的情况下举步维艰。作为第一个领域应用程序,该团队将协助计算考古学家拥有相对稀疏的数据,但具有底层结构化站点。首先,他们将解决集合覆盖问题,以确定最小但足以跨越稀疏数据的离散原子元素和规则集。其次,他们将使用这些原子元素和规则来生成足够的数据样本,以自我监督的方式训练深度网络,以学习如何执行分割、分类和补全。最后,他们将使用学习到的表示来对考古遗址进行建模,从而实现重建、语义理解和遗址分类等。此外,该团队预计开发的模型可以重新设计,以协助其他领域也仅限于对底层​​结构区域的稀疏观察。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Guided pluralistic building contour completion
引导多元建筑轮廓完成
  • DOI:
    10.1007/s00371-022-02532-z
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang, Xiaowei;Ma, Wufei;Varinlioglu, Gunder;Rauh, Nick;He, Liu;Aliaga, Daniel
  • 通讯作者:
    Aliaga, Daniel
Tree Instance Segmentation with Temporal Contour Graph
使用时间轮廓图进行树实例分割
  • DOI:
    10.1109/cvpr52729.2023.00218
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Firoze, Adnan;Wingren, Cameron;Yeh, Raymond A.;Benes, Bedrich;Aliaga, Daniel
  • 通讯作者:
    Aliaga, Daniel
Generative Building Feature Estimation From Satellite Images
根据卫星图像生成建筑特征估计
GlobalMapper: Arbitrary-Shaped Urban Layout Generation
GlobalMapper:任意形状的城市布局生成
Urban tree generator: spatio-temporal and generative deep learning for urban tree localization and modeling
城市树木生成器:用于城市树木定位和建模的时空和生成深度学习
  • DOI:
    10.1007/s00371-022-02526-x
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Firoze, Adnan;Benes, Bedrich;Aliaga, Daniel
  • 通讯作者:
    Aliaga, Daniel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Aliaga其他文献

Impact of Urban Representation on Simulation of Hurricane Rainfall
城市表征对飓风降雨模拟的影响
  • DOI:
    10.1029/2023gl104078
  • 发表时间:
    2023-11-09
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Pratiman Patel;Kumar Ankur;S. Jamshidi;Alka Tiwari;R. Nadimpalli;N. Busireddy;Samira Safaee;K. Osuri;S. Karmakar;Subimal Ghosh;Daniel Aliaga;James Smith;Frank Marks;Zong‐Liang Yang;D. Niyogi
  • 通讯作者:
    D. Niyogi

Daniel Aliaga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Aliaga', 18)}}的其他基金

EAGER: Minimal 3D Modeling Methodology
EAGER:最小 3D 建模方法
  • 批准号:
    2032770
  • 财政年份:
    2020
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Standard Grant
Elements: Data: U-Cube: A Cyberinfrastructure for Unified and Ubiquitous Urban Canopy Parameterization
元素:数据:U-Cube:统一且无处不在的城市冠层参数化的网络基础设施
  • 批准号:
    1835739
  • 财政年份:
    2019
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Standard Grant
CHS: Small: Functional Proceduralization of 3D Geometric Models
CHS:小型:3D 几何模型的功能程序化
  • 批准号:
    1816514
  • 财政年份:
    2018
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Standard Grant
CGV: Medium: Collaborative Research: A Heterogeneous Inference Framework for 3D Modeling and Rendering of Sites
CGV:媒介:协作研究:用于站点 3D 建模和渲染的异构推理框架
  • 批准号:
    1302172
  • 财政年份:
    2013
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Standard Grant
CDS&E: STRONG Cities - Simulation Technologies for the Realization of Next Generation Cities
CDS
  • 批准号:
    1250232
  • 财政年份:
    2012
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Behavioral, Geometrical and Graphical Modeling to Simulate and Visualize Urban Areas
III:媒介:协作研究:集成行为、几何和图形建模来模拟和可视化城市地区
  • 批准号:
    0964302
  • 财政年份:
    2010
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Continuing Grant
RI: Small: A Computational Framework for Marking Physical Objects against Counterfeiting and Tampering
RI:小型:用于标记物理对象防伪和篡改的计算框架
  • 批准号:
    0913875
  • 财政年份:
    2009
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Standard Grant
MSPA-MCS: 3D Scene Digitization - A Novel Invariant Approach for Large-Scale Environment Capture
MSPA-MCS:3D 场景数字化 - 一种用于大规模环境捕获的新颖的不变方法
  • 批准号:
    0434398
  • 财政年份:
    2004
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Standard Grant

相似国自然基金

基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310114
  • 财政年份:
    2023
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310262
  • 财政年份:
    2023
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2402311
  • 财政年份:
    2023
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Towards Effective Detection and Mitigation for Shortcut Learning: A Data Modeling Framework
协作研究:III:媒介:针对捷径学习的有效检测和缓解:数据建模框架
  • 批准号:
    2310260
  • 财政年份:
    2023
  • 资助金额:
    $ 83.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了