EAGER: Collaborative Research: Spatiotemporal transfer learning for enabling cross-country and cross-hemisphere in-season crop mapping
EAGER:协作研究:时空迁移学习,用于实现跨国和跨半球的当季作物绘图
基本信息
- 批准号:2227961
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Crop production is a major industry in the United States (U.S.). In 2021, the U.S. grain export accounted for over 40% share of international grain trade. Millions of U.S. farmers depend on international market for living and prosperity. However, the U.S. grain export is not only facing tough competition from other export countries, but also impacted by grain yield in import countries. In order to gain the competitive edge, stakeholders need to know as early as possible where and how many acres each type of crops that have been planted in a growing season around the world so that yield can be estimated, production and demand balance can be assessed, and grain prices can be predicted. This requires generating in-season crop maps of both U.S. and foreign countries. The classic method to generate in-season crop maps needs a large amount of verified information on crops (i.e., ground truths) to train algorithms for classifying in-season satellite remote sensing images. However, it is difficult or even impossible to obtain ground truths in foreign countries, particularly in early season. This study proposes to develop a spatiotemporally transferable machine-learning algorithm which will be trained with U.S. data and applied to in-season satellite remote sensing images of foreign countries for creating the in-season crop maps of the countries. Success of this project will make the in-season crop mapping of foreign countries possible. The project will significantly enhance the competitiveness and profitability of U.S. agriculture, increase the food security of the world, and potentially bring billions-of-dollars economic benefits to U.S. farmers.Satellite remote sensing with ground truth tagging is the current practice for crop mapping. However, it suffers from two problems: 1) Unavailability of ground truth in foreign countries; 2) Spatiotemporal intransferability of trained classifiers. This study will design spatiotemporally transferable learning algorithm and temporal learning strategy that would maximally transfer label data and models from U.S. to foreign countries. The proposed method utilizes adversarial training and contrastive learning. Through this two-player game, the feature extractor produces domain-invariant features. A classifier trained on this domain-invariant representation can transfer its model to a new domain because the target features match those seen during training, thus bridging the gap between times and locations. The U.S. trained algorithm will be tested in Canada and Brazil to demonstrate its cross-country and cross-hemisphere transferability. Scientifically this project will advance landcover science in in-season crop mapping by offering a novel method of transfer learning, advance machine learning in unsupervised domain adaptation across both space and time, and offer new methods to derive spatiotemporally invariant features from time-series remote sensing images. Socioeconomically this project will enhance competitiveness and profitability of U.S. agriculture, increase food security of the world, and potentially bring billions-of-dollars benefits to U.S. farmers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
农作物生产是美国的主要产业。 2021年,美国粮食出口占国际粮食贸易份额超过40%。数百万美国农民依赖国际市场谋生和繁荣。然而,美国粮食出口不仅面临其他出口国的激烈竞争,还受到进口国粮食产量的影响。为了获得竞争优势,利益相关者需要尽早了解世界各地在生长季节种植的每种作物的种植地点和面积,以便估算产量、评估生产和需求平衡,并且可以预测粮食价格。这需要生成美国和外国的当季作物地图。生成当季作物地图的经典方法需要大量经过验证的作物信息(即地面事实)来训练对当季卫星遥感图像进行分类的算法。然而,在国外,尤其是在季节初期,很难甚至不可能获得真实情况。这项研究建议开发一种时空可迁移的机器学习算法,该算法将使用美国数据进行训练,并应用于外国的当季卫星遥感图像,以创建这些国家的当季作物地图。该项目的成功将使国外当季作物测绘成为可能。该项目将显着提高美国农业的竞争力和盈利能力,提高世界粮食安全,并有可能为美国农民带来数十亿美元的经济利益。带有地面实况标记的卫星遥感是目前农作物测绘的做法。然而,它存在两个问题:1)国外无法获得真实数据; 2)经过训练的分类器的时空不可转移性。这项研究将设计时空可迁移学习算法和时间学习策略,最大限度地将标签数据和模型从美国转移到国外。所提出的方法利用对抗性训练和对比学习。通过这个两人游戏,特征提取器产生域不变特征。在这种域不变表示上训练的分类器可以将其模型转移到新域,因为目标特征与训练期间看到的特征相匹配,从而弥合了时间和位置之间的差距。美国训练的算法将在加拿大和巴西进行测试,以展示其跨国和跨半球的可转移性。从科学角度来看,该项目将通过提供一种新颖的迁移学习方法,推进当季作物测绘中的土地覆盖科学,推进跨空间和时间的无监督领域适应的机器学习,并提供从时间序列遥感中获取时空不变特征的新方法图像。从社会经济角度来看,该项目将提高美国农业的竞争力和盈利能力,提高世界粮食安全,并有可能为美国农民带来数十亿美元的利益。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diane Cook其他文献
The Alberta Moving Beyond Breast Cancer (AMBER) Cohort Study: Recruitment, Baseline Assessment, and Description of the First 500 Participants
艾伯塔省超越乳腺癌 (AMBER) 队列研究:招募、基线评估和前 500 名参与者的描述
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.8
- 作者:
K. Courneya;M. McNeely;S. Culos;J. Vallance;G. Bell;J. Mackey;C. Matthews;Andria R Morielli;Diane Cook;S. MacLaughlin;M. Farris;Stephanie Voaklander;Rachel O’Reilly;C. Friedenreich - 通讯作者:
C. Friedenreich
Associations of device‐measured physical activity and sedentary time with quality of life and fatigue in newly diagnosed breast cancer patients: Baseline results from the AMBER cohort study
设备测量的体力活动和久坐时间与新诊断乳腺癌患者的生活质量和疲劳之间的关联:AMBER 队列研究的基线结果
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:6.2
- 作者:
J. Vallance;C. Friedenreich;Qinggang Wang;C. Matthews;Lin Yang;M. McNeely;S. Culos;G. Bell;Andria R Morielli;Jessica McNeil;Leanne Dickau;Diane Cook;K. Courneya - 通讯作者:
K. Courneya
Use of machine learning to predict medication adherence in individuals at risk for atherosclerotic cardiovascular disease.
使用机器学习来预测有动脉粥样硬化性心血管疾病风险的个体的药物依从性。
- DOI:
10.1016/j.smhl.2022.100328 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:0
- 作者:
Seyed Iman Mirzadeh;Asiful Arefeen;Jessica Ardo;Ramin Fallahzadeh;B. Minor;Jung;Janett A. Hildebr;Diane Cook;Hassan Ghasemzadeh;L. Evangelista - 通讯作者:
L. Evangelista
Remote Monitoring of the Performance Status and Burden of Symptoms of Patients With Gastrointestinal Cancer Via a Consumer-Based Activity Tracker: Quantitative Cohort Study
通过基于消费者的活动跟踪器远程监测胃肠癌患者的表现状态和症状负担:定量队列研究
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.8
- 作者:
Alireza Ghods;A. Shahrokni;Hassan Ghasemzadeh;Diane Cook - 通讯作者:
Diane Cook
The Influence of Social Factors on Common Mental Disorders
社会因素对常见精神疾病的影响
- DOI:
10.1192/bjp.156.5.704 - 发表时间:
1990-05-01 - 期刊:
- 影响因子:10.5
- 作者:
D. Goldberg;K. Bridges;Diane Cook;Barbara Evans;D. Grayson - 通讯作者:
D. Grayson
Diane Cook的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diane Cook', 18)}}的其他基金
EAGER: Multi-objective generation of synthetic time series data to boost model robustness and data privacy
EAGER:合成时间序列数据的多目标生成,以提高模型的稳健性和数据隐私
- 批准号:
2240615 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Smart Health & Biomedical Res in the Era of AI and Adv Data Sci PIs Meeting 2022: Smart Health through the Life Course
合作研究:SCH:智能健康
- 批准号:
2232237 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CHS: Medium: Behavior360: Learning a Human Behaviorome in Uncontrolled Settings
CHS:媒介:Behavior360:在不受控制的环境中学习人类行为组
- 批准号:
1954372 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
NRI: INT: Learning-Enabled Robot Support of Daily Activities for Successful Activity Completion
NRI:INT:支持学习的机器人支持日常活动以成功完成活动
- 批准号:
1734558 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: The Science of Activity-Predictive Cyber-Physical Systems (APCPS)
CPS:TTP 选项:协同:协作研究:活动预测网络物理系统 (APCPS) 的科学
- 批准号:
1543656 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CI-ADDO-EN: Smart Home in a Box: Creating a Large Scale, Long Term Repository for Smart Environment Technologies
CI-ADDO-EN:盒子里的智能家居:为智能环境技术创建大规模、长期存储库
- 批准号:
1262814 - 财政年份:2013
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Supporting US-Based Students to Attend the 2013 IEEE International Conference on Data Mining (ICDM 2013)
支持美国学生参加 2013 年 IEEE 国际数据挖掘会议 (ICDM 2013)
- 批准号:
1313551 - 财政年份:2013
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
IEEE PerCom 2011 Student Travel Support
IEEE PerCom 2011 学生旅行支持
- 批准号:
1057724 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SHB: Medium: Collaborative Research: Crafting a Human-Centric Environment to Support Human Health Needs
SHB:媒介:合作研究:打造以人为本的环境来支持人类健康需求
- 批准号:
1064628 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
NeTS: NSF Workshop Proposal on Pervasive Computing and Smart Environments with Applications
NeTS:NSF 关于普适计算和智能环境及其应用的研讨会提案
- 批准号:
1059280 - 财政年份:2010
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant