Collaborative Proposal: A Geometric Method for Image Registration

协作提案:图像配准的几何方法

基本信息

  • 批准号:
    0612389
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

A new computational method for image registration is formulated. Registration refers to the task of aligning a pair of images obtained by CT (computed tomography), MR (magnetic resonance), ultra-sound, and other techniques, so that they can be compared both qualitatively and quantitatively. This is an important problem with applications ranging from remote sensing to medicine. In medicine, imaging techniques and analysis have become an important, non-invasive tool for diagnosis and for surgical and radiation treatment planning. Despite advances in this area of research, the challenges posed by registration for three-dimensional images remains an open problem. A new mathematical approach is developed that optimizes any chosen similarity measure of the images, subject to the constraint of a set of differential equations that can generate any differentiable and invertible transformation.The main intellectual merit of the project is that it significantly enhances our understanding of imagery and shapes and also the accuracy and efficiency of image registration techniques. The main features of the new method are as follows.1. Similarity measures used to compare images are directly optimized.2. The method has a landmark matching capacity for large deformations between images.3. The method is founded on solid mathematical theory; in particular, the admissible space of transformations is the set of all differentiable and invertible transformations.4. The project is carried out with the use of the software Insight Tool Kit developed by the National Institutes of Health; that software provides an excellent resource for the research activity.The broader impacts of the proposed activity are as follows.1. Undergraduate and graduate students are educated and trained to apply powerful mathematical techniques to medical and other image processing problems.2. The new method will impact other areas of the computational sciences. Results are to be presented at conferences and published in scientific journals and through the mass media directed at scientists and the general population as well.3. New partnerships between medical doctors, biomedical engineers, and mathematicians are established, helping create a favorable environment for further research aimed at improving the health of our citizens.
制定了一种新的图像配准计算方法。 配准是指将通过CT(计算机断层扫描)、MR(磁共振)、超声等技术获得的一对图像进行对齐,以便进行定性和定量比较的任务。这是从遥感到医学等应用领域的一个重要问题。在医学领域,成像技术和分析已成为诊断以及手术和放射治疗计划的重要非侵入性工具。 尽管这一研究领域取得了进展,但三维图像配准带来的挑战仍然是一个悬而未决的问题。开发了一种新的数学方法,可以优化图像的任何选定的相似性度量,并受到一组可以生成任何可微分和可逆变换的微分方程的约束。该项目的主要智力优点在于,它显着增强了我们对图像和形状以及图像配准技术的准确性和效率。新方法的主要特点如下: 1.用于比较图像的相似性度量被直接优化。2.该方法对于图像间的大变形具有标志性的匹配能力。 3.该方法建立在坚实的数学理论之上;特别是,变换的允许空间是所有可微和可逆变换的集合。 4.该项目是使用美国国立卫生研究院开发的软件Insight Tool Kit进行的;该软件为研究活动提供了极好的资源。拟议活动的更广泛影响如下: 1.本科生和研究生接受教育和培训,将强大的数学技术应用于医学和其他图像处理问题。2.新方法将影响计算科学的其他领域。结果将在会议上公布并在科学期刊上发表,并通过面向科学家和普通大众的大众媒体发布。3。医生、生物医学工程师和数学家之间建立了新的合作伙伴关系,有助于为旨在改善公民健康的进一步研究创造有利的环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Max Gunzburger其他文献

Computational Geometry: Theory and Applications
  • DOI:
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hoa Nguyen;J. Burkardt;Max Gunzburger;Lili Ju;Yuki Saka
  • 通讯作者:
    Yuki Saka
A sparse-grid method for multi-dimensional backward stochastic differential equations
多维后向随机微分方程的稀疏网格方法
Multifidelity Methods for Uncertainty Quantification of a Nonlocal Model for Phase Changes in Materials
材料相变非局部模型不确定性量化的多重保真方法
  • DOI:
    10.48550/arxiv.2310.10750
  • 发表时间:
    2023-10-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Parisa Khodabakhshi;O. Burkovska;Karen Willcox;Max Gunzburger
  • 通讯作者:
    Max Gunzburger
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
气候相关建模中有效不确定性量化的多保真度蒙特卡罗估计
EFFICIENT AND LONG-TIME ACCURATE SECOND-ORDER METHODS FOR THE STOKES–DARCY SYSTEM
STOKES-DARCY系统高效且长时间准确的二阶方法
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Wenbin Chen;Max Gunzburger;Dong Sun;Xiaoming Wang
  • 通讯作者:
    Xiaoming Wang

Max Gunzburger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Max Gunzburger', 18)}}的其他基金

Collaborative Research: Hybrid Fluid-Structure Interaction Material Point Method with applications to Large Deformation Problems in Hemodynamics
合作研究:混合流固耦合质点法及其在血流动力学大变形问题中的应用
  • 批准号:
    1912705
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Workshop on Quantification of Uncertainty: Improving Efficiency and Technology
不确定性量化研讨会:提高效率和技术
  • 批准号:
    1707658
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Algorithms and modeling for nonlocal models of diffusion and mechanics and for plasmas
扩散和力学非局部模型以及等离子体的算法和建模
  • 批准号:
    1315259
  • 财政年份:
    2013
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Discrete and continuous nonlocal material models and their coupling
离散和连续非局部材料模型及其耦合
  • 批准号:
    1013845
  • 财政年份:
    2010
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Uncertainty Quantification for Systems Governed by Partial Differential Equations; May 2010; Edinburgh, Scotland
偏微分方程控制系统的不确定性量化;
  • 批准号:
    0932948
  • 财政年份:
    2009
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
CMG Collaborative Proposal: Multiphysics and multiscale modeling, computations, and experiments for Karst aquifers
CMG 协作提案:喀斯特含水层的多物理场和多尺度建模、计算和实验
  • 批准号:
    0620035
  • 财政年份:
    2006
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Information Technology Research (ITR): Building the Tree of Life -- A National Resource for Phyloinformatics and Computational Phylogenetics
信息技术研究(ITR):构建生命之树——系统信息学和计算系统发育学的国家资源
  • 批准号:
    0331495
  • 财政年份:
    2003
  • 资助金额:
    $ 12万
  • 项目类别:
    Cooperative Agreement
Finite Element Methods for Two Problems for Hyperbolic Partial Differential Equations
双曲偏微分方程两个问题的有限元方法
  • 批准号:
    0308845
  • 财政年份:
    2003
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Centroidal Voronoi Tessellations: Algorithms, Applications, and Theory
质心 Voronoi 曲面细分:算法、应用和理论
  • 批准号:
    9988303
  • 财政年份:
    2000
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Least-Squares Finite Element Methods and Optimization-Based Domain Decomposition Methods for Partial Differential Equations
偏微分方程的最小二乘有限元方法和基于优化的域分解方法
  • 批准号:
    9806358
  • 财政年份:
    1998
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似国自然基金

指向提议者的共情关怀对第三方惩罚行为的影响:心理、脑与计算机制
  • 批准号:
    32371102
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
经济博弈中提议者对先前第三方干预者的分配公平性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于深度层次特征相似性度量的视觉跟踪方法研究
  • 批准号:
    61773397
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
构造类型专家系统及其开发工具的研究
  • 批准号:
    68875006
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference Proposal:Summer School on Aspects of Geometric Group Theory
会议提案:几何群理论方面的暑期学校
  • 批准号:
    1928652
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Topological, geometric and probabilistic aspects of dynamical systems (renewal proposal)
动力系统的拓扑、几何和概率方面(更新提案)
  • 批准号:
    407739711
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Heisenberg Grants
Conference Proposal: Geometric and topological aspects of the representation theory of finite groups
会议提案:有限群表示论的几何和拓扑方面
  • 批准号:
    1624050
  • 财政年份:
    2016
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Proposal for PhD Studies in Geometric Quantization
几何量化博士研究提案
  • 批准号:
    443825-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 12万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Proposal for PhD Studies in Geometric Quantization
几何量化博士研究提案
  • 批准号:
    443825-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 12万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了