Homological Invariants of Knots and Three-Manifolds
结和三流形的同调不变量
基本信息
- 批准号:0603940
- 负责人:
- 金额:$ 12.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0603940Jacob RasmussenThis project is about a class of knot invariants known as ``knot homologies'' which generalize classical invariants such as theAlexander and Jones polynomial. The PI plans to investigate a conjectured relationship between two versions of these invariants. The first version was developed by Khovanov and Rozansky and is combinatorial in nature. The second is known as knot Floer homology, and has its origins in the Heegaard Floer homology of Ozsvath and Szabo. It is not combinatorial, but is known to carry a great deal of geometric information about the knot. Despite the differences in their definitions, these two theories exhibit some truly striking similarities. The project aims to explain these similarities and to use them to get a better understanding of both theories. One posssible application is to find combinatorial analogs of gauge theoretic invariants like the knot Floer homology.The study of knotted curves in three-dimensional space is intimately related to the geometry of three- and four-dimensional spaces themselves. In the last few decades, ideas from physics have led to the development of two major types of invariants for such curves, known as ``quantum'' and ``gauge theoretic'' invariants. Although both types have roots in the quantum theory of fields, there was little sign that they were related. Recently, however, some remarkable similarities between the two have begun to appear. The aim of this project is to better understand the relationship between these two classes of invariants.
DMS-0603940Jacob Rasmussen这个项目是关于一类被称为“结同源性”的结不变量,它概括了亚历山大和琼斯多项式等经典不变量。 PI 计划调查这些不变量的两个版本之间的推测关系。第一个版本是由 Khovanov 和 Rozansky 开发的,本质上是组合的。第二个称为结Floer同源性,起源于Ozsvath和Szabo的Heegaard Floer同源性。它不是组合的,但已知它携带大量有关结的几何信息。尽管它们的定义存在差异,但这两种理论却表现出一些真正惊人的相似之处。该项目旨在解释这些相似之处并利用它们来更好地理解这两种理论。一种可能的应用是寻找规范理论不变量的组合类比,例如结弗洛尔同调。三维空间中的结曲线的研究与三维和四维空间本身的几何形状密切相关。在过去的几十年中,物理学的思想导致了此类曲线的两种主要类型的不变量的发展,称为“量子”和“规范理论”不变量。尽管这两种类型都源于量子场论,但几乎没有迹象表明它们之间存在相关性。然而最近,两者之间开始出现一些显着的相似之处。该项目的目的是更好地理解这两类不变量之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zoltan Szabo其他文献
Analysis of surgical movements during suturing in laparoscopy.
腹腔镜缝合时手术动作分析
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Zoltan Szabo;J. Hunter;G. Berci;J. Sackier;A. Cuschieri - 通讯作者:
A. Cuschieri
Fetoscopic and open transumbilical fetal cardiac catheterization in sheep. Potential approaches for human fetal cardiac intervention.
绵羊胎儿镜和开放式经脐胎儿心导管插入术。
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:37.8
- 作者:
Thomas Kohl;Zoltan Szabo;Kenji Suda;Edwin Petrossian;E. Ko;Deniz Kececioglu;P. Moore;Norman H. Silverman;M. Harrison;Tony M. Chou;F. Hanley - 通讯作者:
F. Hanley
Zoltan Szabo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zoltan Szabo', 18)}}的其他基金
Three-Dimensional Manifolds, Heegaard Floer Homology and Knot Theory
三维流形、Heegaard Floer 同调和纽结理论
- 批准号:
1904628 - 财政年份:2019
- 资助金额:
$ 12.15万 - 项目类别:
Continuing Grant
Low Dimensional Topology and holomorphic disks
低维拓扑和全纯盘
- 批准号:
1606571 - 财政年份:2016
- 资助金额:
$ 12.15万 - 项目类别:
Standard Grant
Heegaard Floer homology, knots, and three-manifolds
Heegaard Floer 同调、结和三流形
- 批准号:
1309152 - 财政年份:2013
- 资助金额:
$ 12.15万 - 项目类别:
Continuing Grant
Low Dimensional Topology and Heegaard Floer homology
低维拓扑和 Heegaard Florer 同调
- 批准号:
1006006 - 财政年份:2010
- 资助金额:
$ 12.15万 - 项目类别:
Continuing Grant
Heegaard Floer homology and Low Dimensional Topology
Heegaard Florer 同调和低维拓扑
- 批准号:
0704053 - 财政年份:2007
- 资助金额:
$ 12.15万 - 项目类别:
Continuing Grant
Spectral Analysis on Riemannian Manifolds
黎曼流形的谱分析
- 批准号:
0604861 - 财政年份:2006
- 资助金额:
$ 12.15万 - 项目类别:
Continuing Grant
Gauge Theory and Low Dimensional Topology
规范理论和低维拓扑
- 批准号:
0406155 - 财政年份:2004
- 资助金额:
$ 12.15万 - 项目类别:
Continuing Grant
Isospectral and isotonal metrics with different local geometries
具有不同局部几何形状的等谱和等调度量
- 批准号:
0104361 - 财政年份:2001
- 资助金额:
$ 12.15万 - 项目类别:
Standard Grant
Gauge theory, 3-manifolds, and smooth 4-manifolds
规范理论、3 流形和光滑 4 流形
- 批准号:
0107792 - 财政年份:2001
- 资助金额:
$ 12.15万 - 项目类别:
Standard Grant
相似国自然基金
偏微分方程的稳定性与绝热不变量
- 批准号:12371241
- 批准年份:2023
- 资助金额:44 万元
- 项目类别:面上项目
Cowen-Douglas算子组的相似不变量
- 批准号:12371129
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
纽结理论中的若干不变量
- 批准号:12371065
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
L^2-不变量的逼近问题
- 批准号:12371054
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
代数簇纤维化的不变量与庞加莱问题
- 批准号:12331001
- 批准年份:2023
- 资助金额:193 万元
- 项目类别:重点项目
相似海外基金
A study of homological invariants of knots and 3-manifolds
结和3-流形的同调不变量的研究
- 批准号:
22K03318 - 财政年份:2022
- 资助金额:
$ 12.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new look into various arithmetic and topological invariants through the eyes of modular knots
从模结的角度重新审视各种算术和拓扑不变量
- 批准号:
21K18141 - 财政年份:2021
- 资助金额:
$ 12.15万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
A study of invariants and local moves for virtual knots
虚拟结不变量和局部移动的研究
- 批准号:
21K03257 - 财政年份:2021
- 资助金额:
$ 12.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Holomorphic Invariants of Knots and Contact Manifolds
结和接触流形的全纯不变量
- 批准号:
2003404 - 财政年份:2020
- 资助金额:
$ 12.15万 - 项目类别:
Continuing Grant
New Invariants of Knots and 3-Manifolds
结和 3 流形的新不变量
- 批准号:
2003488 - 财政年份:2020
- 资助金额:
$ 12.15万 - 项目类别:
Continuing Grant