SST: CAD Tools and Verification for Resonator-Based Sensor Technology

SST:基于谐振器的传感器技术的 CAD 工具和验证

基本信息

  • 批准号:
    0426660
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

SST: CAD Tools and Verification for Resonator-Based Sensor TechnologyA major effort in sensing technology centers about the miniaturization of sensing elements.Much investment is being expended upon the development of sensing systems that can be incorpo-ratedinto autonomous micro-electrical-mechanical systems (MEMS) for widespread wireless sensingneeds ranging from monitoring buildings and bridges for safety, to electronic noses for detectingatmospheric chemical hazards across wide geographic areas, to electronic ears for monitoring com-municationchannels just to name a few. One key to the successful deployment of such systemsis overcoming the energy needs of sensor nodes. Note that sensors need power not only to sensebut also to communicate. An attractive technology for dealing with many of these issues is bulk-acousticwave resonators (BAWRs); at the MEMS scale of a few microns these devices operate inthe GHz range (cell phone frequencies). BAWRs can be used as high quality frequency referencesin chemical sensors, elements of signal processing filter networks, and as elements of wireless com-municationsystems all at very low power compared to alternate technologies. Much of the promiseof such devices has been seen in proof-of-concept experiments that have recently been published.However, a careful reading of these publications shows that while the general operating principlesof BAWRs are known, there is a distinct lack of accuracy to which resonant-based MEMS sensordesigners understand expected system behavior. This proposal intends to help rectify this defi-ciencyand to promote more rapid development of successful BAWR devices by developing freelyavailable computer aided design (CAD) tools.This interdisciplinary team of researchers intends to not only develop a CAD tool but to alsoconduct experiments to verify its accuracy. Their CAD software is designed to accurately predictresonator quality degradation from thermoelastic damping, intrinsic material losses, and anchor(or clamping) losses. They will tackle the problem in a new way for the MEMS community bylooking directly to the governing partial differential equations (PDEs) for the resonator behaviorand then abstracting small, accurate, and fast models for design level computations using advancedKrylov model reduction methods. Novel aspects in their approach include a modeling system thatwill automatically separate different damping effects from each other and make possible new virtualexperiments for the creation of heretofore unknown BAWRs. Key to this last point is their proposalto develop an optimization module for the CAD tool that will allow for the optimization of targetedperformance parameters, such as transfer functions, that are needed for higher level sensor nodedesign. Integral to the proposed work will be the fabrication of poly- and single-crystal BAWRsthat will test the models, help refine them, and test new concepts in coupled resonator designs.The team make-up includes experts in material modeling, scientific computing, and MEMS designand fabrication. They intend to build upon their past successes in creating new MEMS devicesand in creating and disseminating MEMS design software.The scientific questions to be addressed in this proposal are of a critical importance to thecommunity. But beyond these merits, it is noted that the proposal will have the broader impactof developing the community's research infrastructure as the software to be developed will be dis-tributedfreely. On the human resource side the proposers will fill a broader objective by trainingstudents in an highly interdisciplinary field by combining training in semi-conductor engineeringwith mechanical modeling and scientific computing. Such graduates are sorely needed in the com-munity.The proposers additionally plan to recruit from the successful Summer UndergraduateProgram in Engineering Research at Berkeley (SUPERB). This program aims to reach out tounder-represented groups in engineering and provide them with a high quality research experienceand encourage them to aspire to graduate degrees. The PIs have successfully participated in thisprogram in the past.
SST:基于谐振器的传感器技术的 CAD 工具和验证传感技术的主要工作集中在传感元件的小型化上。大量投资用于开发可合并到自主微机电系统中的传感系统( MEMS)满足广泛的无线传感需求,从监控建筑物和桥梁的安全性,到检测广泛地理区域的大气化学危害的电子鼻,再到监控通信通道的电子耳仅举几例。成功部署此类系统的关键之一是克服传感器节点的能源需求。请注意,传感器不仅需要电力来进行传感,还需要电力来进行通信。体声波谐振器 (BAWR) 是解决许多此类问题的一项有吸引力的技术。在几微米的 MEMS 尺度上,这些设备在 GHz 范围(手机频率)内运行。 BAWR 可用作化学传感器中的高质量频率参考、信号处理滤波器网络的元件以及无线通信系统的元件,与替代技术相比,所有这些都具有非常低的功耗。此类设备的大部分前景已在最近发表的概念验证实验中得到体现。然而,仔细阅读这些出版物表明,虽然 BAWR 的一般操作原理是已知的,但其准确性明显缺乏。基于谐振的 MEMS 传感器设计人员了解预期的系统行为。该提案旨在通过开发免费的计算机辅助设计 (CAD) 工具来帮助纠正这一缺陷,并促进成功的 BAWR 设备的更快开发。这个跨学科的研究团队不仅打算开发 CAD 工具,还打算进行实验来验证其性能准确性。他们的 CAD 软件旨在准确预测因热弹性阻尼、固有材料损失和锚固(或夹紧)损失而导致的谐振器质量下降。他们将以一种新的方式为 MEMS 社区解决这个问题,直接研究谐振器行为的控制偏微分方程 (PDE),然后使用先进的 Krylov 模型简化方法抽象出小型、准确且快速的模型以进行设计级计算。他们的方法的新颖之处包括一个建模系统,该系统将自动将不同的阻尼效应相互分离,并使新的虚拟实验成为可能,以创建迄今为止未知的 BAWR。最后一点的关键是他们建议为 CAD 工具开发一个优化模块,该模块将允许优化更高级别传感器节点设计所需的目标性能参数,例如传递函数。拟议工作的组成部分将是多晶和单晶 BAWR 的制造,这将测试模型,帮助完善模型,并测试耦合谐振器设计中的新概念。团队组成包括材料建模、科学计算和MEMS 设计和制造。他们打算以过去在创建新 MEMS 设备以及创建和传播 MEMS 设计软件方面取得的成功为基础。该提案中要解决的科学问题对于社区至关重要。但除了这些优点之外,值得注意的是,该提案还将对开发社区的研究基础设施产生更广泛的影响,因为要开发的软件将免费分发。在人力资源方面,提案者将通过将半导体工程培训与机械建模和科学计算相结合,在高度跨学科领域培训学生,从而实现更广泛的目标。社区急需这样的毕业生。提案者还计划从伯克利工程研究暑期本科生项目(SUPERB)中招募人才。该计划旨在接触工程领域代表性不足的群体,为他们提供高质量的研究经验,并鼓励他们立志攻读研究生学位。 PI 过去曾成功参与过该计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanjay Govindjee其他文献

An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations
n 变体马氏体相变孪晶相容层合混合自由能的上限
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sanjay Govindjee;K. Hackl;R. Heinen
  • 通讯作者:
    R. Heinen

Sanjay Govindjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanjay Govindjee', 18)}}的其他基金

EAGER: Knit One, Purl Two, Studies on the Properties of Knitted Fabrics for Advanced Engineering Applications
EAGER:针织一,金银丝二,高级工程应用针织物性能研究
  • 批准号:
    2344589
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Natural Hazards Engineering Research Infrastructure: Computational Modeling and Simulation Center
自然灾害工程研究基础设施:计算建模与仿真中心
  • 批准号:
    1612843
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Cooperative Agreement
High Performance Simulation Tools for Complex MEMS Resonator Design
用于复杂 MEMS 谐振器设计的高性能仿真工具
  • 批准号:
    0928785
  • 财政年份:
    2009
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Career Plan in Mechanics and Materials
职业:力学和材料职业规划
  • 批准号:
    9734121
  • 财政年份:
    1998
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Physical and Numerical Modeling in Evolving Elastomers
演化弹性体的物理和数值模拟
  • 批准号:
    9622284
  • 财政年份:
    1996
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于自组织系统建模技术的优化城市形态辅助设计工具原型研究
  • 批准号:
    51108228
  • 批准年份:
    2011
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
专有异构CAD系统的在线集成桥梁与立即协同工具研究
  • 批准号:
    60673027
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
具有认知机理的创新设计理论、方法及工具研究
  • 批准号:
    50675144
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
DFX驱动的微器件e-CAD工具的研究
  • 批准号:
    50145006
  • 批准年份:
    2001
  • 资助金额:
    7.0 万元
  • 项目类别:
    专项基金项目
矩阵设计工具
  • 批准号:
    69074014
  • 批准年份:
    1990
  • 资助金额:
    4.5 万元
  • 项目类别:
    面上项目

相似海外基金

Increasing green retrofits and installation of renewable technologies by SMEs through next generation, cloud-based CAD/Estimating tools to reduce UK housing carbon emissions
通过下一代基于云的 CAD/估算工具,增加中小企业的绿色改造和可再生技术安装,以减少英国住房碳排放
  • 批准号:
    10044851
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant for R&D
Rethinking machine learning algorithms and CAD tools to rapidly create efficient FPGA implementations
重新思考机器学习算法和 CAD 工具以快速创建高效的 FPGA 实现
  • 批准号:
    544228-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Rethinking machine learning algorithms and CAD tools to rapidly create efficient FPGA implementations
重新思考机器学习算法和 CAD 工具以快速创建高效的 FPGA 实现
  • 批准号:
    544228-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
DF/CAD: Computer-Aided Design Tools for the Age of Digital Fabrication
DF/CAD:数字制造时代的计算机辅助设计工具
  • 批准号:
    RGPIN-2017-05602
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Grants Program - Individual
Rethinking machine learning algorithms and CAD tools to rapidly create efficient FPGA implementations
重新思考机器学习算法和 CAD 工具以快速创建高效的 FPGA 实现
  • 批准号:
    544228-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了