COLLABORATIVE RESEARCH: Hurwitz Numbers, Teichmueller Spaces, Schubert Calculus and Cluster Algebras
合作研究:Hurwitz 数、Teichmueller 空间、舒伯特微积分和簇代数
基本信息
- 批准号:0401178
- 负责人:
- 金额:$ 9.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores links between classical combinatorics, theory of moduli spaces of holomorphic curves, real algebraic geometry and total positivity, and the newly emerging theory of cluster algebras. In particular,we plan to use the link between decorated Teichmueller spaces and theory of cluster algebras to investigate moduli spaces; to develop a general geometric framework for cluster algebras and to find a sufficiently generic source of geometric examples of formal cluster algebras supplementing those arising from Schubert varieties. In addition, we will apply the cluster algebra approach combined with a geometric Littlewood-Richardson rule to the Shapiro-Shapiro conjecture in the real Schubert calculus. Finally, we plan to generalize ELSV-formula for Hurwitz numbers, namely, to express (double) Hurwitz numbers as integrals of certain characteristic classes over moduli spaces.Many significant breakthroughs in mathematics are inspired by theoretical physics and achieved through the interaction between different branches of mathematics such as combinatorics, geometry (differential, symplectic and algebraic), the theory of integrable models, and many others. Geometric objects we are interested in can be used to describe parameters of physical systems. In many cases, the cluster algebra formalism, recently discovered by Fomin and Zelevinsky, turns out to be uniquely suited for an investigation of physically important coordinate systems. Extending the scope of the cluster algebra approach will prove useful in topological field theory, 2-D gravity, classical and quantum integrable models and, on a more applicable level, in electrical engineering, in particular, in the design of nonlinear filters.
该项目探讨了古典组合学,霍明态曲线模量空间的理论,实际代数几何和总阳性,以及群集代数的新出现的理论。特别是,我们计划使用装饰的Teichmueller空间与集群代数理论之间的联系来研究模量空间。为了开发一个用于群集代数的一般几何框架,并找到一个足够通用的形式示例的形式群集代数的几何示例,该群集补充了舒伯特品种产生的群集。此外,我们将应用群集代数方法与几何林木 - 里查森(Littlewood-Richardson)规则相结合,以在真实的舒伯特演算中的shapiro-shapiro猜想中。 Finally, we plan to generalize ELSV-formula for Hurwitz numbers, namely, to express (double) Hurwitz numbers as integrals of certain characteristic classes over moduli spaces.Many significant breakthroughs in mathematics are inspired by theoretical physics and achieved through the interaction between different branches of mathematics such as combinatorics, geometry (differential, symplectic and algebraic), the theory of integrable模特和许多其他。我们感兴趣的几何对象可用于描述物理系统的参数。在许多情况下,Fomin和Zelevinsky最近发现的集群代数形式主义事实非常适合研究物理上重要的坐标系统。扩展群集代数方法的范围将被证明在拓扑场理论,2-D重力,经典和量子整合模型中,并且在更适用的水平上,特别是在电气工程中,尤其是在非线性过滤器的设计中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Michael Shapiro其他文献
Increased Rates of Mental Health Service Utilization by U.S. College Students.
美国大学生心理健康服务利用率的提高。
- DOI:
- 发表时间:20192019
- 期刊:
- 影响因子:3.8
- 作者:Michael Shapiro;M. Morris;A. PumariegaMichael Shapiro;M. Morris;A. Pumariega
- 通讯作者:A. PumariegaA. Pumariega
Roadmap for Provision of Safer Healthcare Information Systems: Preventing e-Iatrogenesis
提供更安全的医疗信息系统的路线图:防止电子医疗
- DOI:
- 发表时间:20112011
- 期刊:
- 影响因子:0
- 作者:W. Hersh;C. McMullen;Joe A. Wasserman;Michael Shapiro;C. Kilo;J. AshW. Hersh;C. McMullen;Joe A. Wasserman;Michael Shapiro;C. Kilo;J. Ash
- 通讯作者:J. AshJ. Ash
Change in lactate production in Myc‐transformed cells precedes apoptosis and can be inhibited by Bcl‐2 overexpression
Myc 转化细胞中乳酸产生的变化先于细胞凋亡,并且可被 Bcl-2 过表达抑制
- DOI:
- 发表时间:19991999
- 期刊:
- 影响因子:3.5
- 作者:K. Papas;Lei Sun;E. S. Roos;J. Gounarides;Michael Shapiro;C. NalinK. Papas;Lei Sun;E. S. Roos;J. Gounarides;Michael Shapiro;C. Nalin
- 通讯作者:C. NalinC. Nalin
A Summary of General Assessment Factors for Evaluating the Quality of Scientific and Technical Information
科技信息质量评价一般评价因素综述
- DOI:
- 发表时间:20132013
- 期刊:
- 影响因子:0
- 作者:P. Gilman;Stanley;P. Gilman;Stan Meiburg;Region;Joseph Merenda;William Muszynski;Joanne Rodman;Michael Ryan;Michael Shapiro;Elaine Stanley;Ramona Trovato;Vanessa Oei;Anna Vu;Wolgast;R. Perfetti;Thomas Baugh;Michael Brody;Reginald Cheatham;P. Cirone;John Diamante;M. Firestone;Ochp A Robert Flaak;Jerri;R. Hemmett;Lee Hofmann;Daniel Malloy;Kate Mahaffey;Carl Mazza;James Nelson;J. Orme;Rosemarie Russo;Rita Schoeny;Margaret Stasikowski;Kevin Teichman;Mary Ellen Weber;William Wood;Tracey Woodruff;Edward Bender;Kerry L Dearfield;Kathryn GallagherP. Gilman;Stanley;P. Gilman;Stan Meiburg;Region;Joseph Merenda;William Muszynski;Joanne Rodman;Michael Ryan;Michael Shapiro;Elaine Stanley;Ramona Trovato;Vanessa Oei;Anna Vu;Wolgast;R. Perfetti;Thomas Baugh;Michael Brody;Reginald Cheatham;P. Cirone;John Diamante;M. Firestone;Ochp A Robert Flaak;Jerri;R. Hemmett;Lee Hofmann;Daniel Malloy;Kate Mahaffey;Carl Mazza;James Nelson;J. Orme;Rosemarie Russo;Rita Schoeny;Margaret Stasikowski;Kevin Teichman;Mary Ellen Weber;William Wood;Tracey Woodruff;Edward Bender;Kerry L Dearfield;Kathryn Gallagher
- 通讯作者:Kathryn GallagherKathryn Gallagher
Ethical aspects of cardiopulmonary-cerebral resuscitation research
- DOI:10.1016/s0196-0644(84)80464-310.1016/s0196-0644(84)80464-3
- 发表时间:1984-09-011984-09-01
- 期刊:
- 影响因子:
- 作者:Michael Eliastam;Peter Safar;Michael Shapiro;Samuel GorovitzMichael Eliastam;Peter Safar;Michael Shapiro;Samuel Gorovitz
- 通讯作者:Samuel GorovitzSamuel Gorovitz
共 43 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9
Michael Shapiro的其他基金
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
- 批准号:21007912100791
- 财政年份:2021
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Standard GrantStandard Grant
Conference Proposal: Cluster Algebra and Mathematical Physics
会议提案:团簇代数和数学物理
- 批准号:18029341802934
- 财政年份:2018
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Generalized Cluster Structures of Geometric Type
合作研究:几何类型的广义簇结构
- 批准号:17021151702115
- 财政年份:2017
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Continuing GrantContinuing Grant
The Physiological Genomics of Diet Switching in Mammalian Herbivores
哺乳动物草食动物饮食转换的生理基因组学
- 批准号:16564971656497
- 财政年份:2017
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Continuing GrantContinuing Grant
COLLABORATIVE RESEARCH: CLUSTER STRUCTURES ON POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY
合作研究:泊松李群的簇结构和完全可积性
- 批准号:13623521362352
- 财政年份:2014
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Continuing GrantContinuing Grant
CAREER: The domesticated pigeon as a model for avian genetics and diversity
职业:家养鸽子作为鸟类遗传学和多样性的模型
- 批准号:11491601149160
- 财政年份:2012
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: Cluster Algebras Approach to Poisson-Lie Groups and Higher Genus Directed Networks
协作研究:泊松李群和更高属有向网络的簇代数方法
- 批准号:11013691101369
- 财政年份:2011
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Standard GrantStandard Grant
Genetic basis of morphological diversity and parallel evolution in ninespine sticklebacks
九刺棘鱼形态多样性和平行进化的遗传基础
- 批准号:07449740744974
- 财政年份:2008
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Cluster Algebras, Canonical Bases, and Nets on Surfaces of Higher Genus
协作研究:簇代数、规范基和更高属表面上的网络
- 批准号:08006710800671
- 财政年份:2008
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Standard GrantStandard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:92062619206261
- 财政年份:1992
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Fellowship AwardFellowship Award
相似国自然基金
钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
- 批准号:52371195
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
- 批准号:82370525
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
- 批准号:62371132
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
- 批准号:52302289
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Research on characterization of the fundamental function sigma in the theory of Abelian functions via heat equations and general addition formulae
通过热方程和一般加法公式表征阿贝尔函数理论中的基本函数 sigma
- 批准号:16K0508216K05082
- 财政年份:2016
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Research toward to construct a concrete theory of Abelian functions
阿贝尔函数具体理论的构建研究
- 批准号:1954000219540002
- 财政年份:2007
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Arithmetic geometry of covers of algebraic curves--Galois representations, Hurwitz spaces, and positive characteristic
代数曲线覆盖的算术几何——伽罗瓦表示、赫尔维茨空间和正特征
- 批准号:1854002718540027
- 财政年份:2006
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Research on Quasi-periodic continued fractions in terms of Special functions
特殊函数的拟周期连分式研究
- 批准号:1854000618540006
- 财政年份:2006
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Research on determinantal formulae and Bernoulli-Hurwitz numbers in the theory of Abelian functions
阿贝尔函数理论中的行列式和Bernoulli-Hurwitz数研究
- 批准号:1654000216540002
- 财政年份:2004
- 资助金额:$ 9.9万$ 9.9万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)