Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications

合作研究:泊松簇的广义簇结构及其应用

基本信息

  • 批准号:
    2100791
  • 负责人:
  • 金额:
    $ 36.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This project lies in an area of algebra that is being developed with a view toward applications in Mathematical and Theoretical Physics. A particular focus is on the theory of Poisson-Lie groups and cluster algebras. The former has long served as a natural framework in which important exactly solvable models of classical and quantum mechanics can be studied. The latter, discovered by Fomin and Zelevinsky in 2001, have since been shown to have numerous exciting connections with a wide range of mathematical subjects, including combinatorics, representation theory, algebraic and Poisson geometry, as well as mirror symmetry and statistical and high energy physics. The PIs will build upon their previous collaborations to continue a systematic study of multiple cluster structures in coordinate rings of a number of varieties of importance in algebraic geometry, representation theory and mathematical physics and study an interaction between corresponding cluster algebras. This research will be linked to the development of undergraduate and graduate courses and research projects. Synergistic activities are planned to promote inter-institutional and inter-departmental cooperation, to attract graduate students from underrepresented groups and with diverse educational backgrounds, and, through community outreach, to expose high school students to mathematical research.The PIs will work on applications of Poisson geometry to the theory of cluster algebras. In more detail, the main goals of the project include: 1) construction and study of generalized cluster structures on Poisson-Lie groups and Poisson homogeneous varieties including Poisson-Lie groups equipped with Belavin-Drinfeld brackets, Drinfeld doubles and Poisson-Lie duals of simple Poisson-Lie groups,and K-theoretic Coulomb branches of 3d N = 4 SUSY gauge theories; and 2) applications of generalized cluster structures on Poisson varieties to classical and non-commutative discrete, integrable systems that arise as sequences of cluster transformations, representations of quantum groups at roots of unity, and higher Teichmuller theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目属于正在开发的代数领域,旨在数学和理论物理中的应用。特别关注泊松李群和簇代数的理论。前者长期以来一直作为一个自然框架,可以在其中研究经典和量子力学的重要的精确可解模型。后者由 Fomin 和 Zelevinsky 于 2001 年发现,已被证明与广泛的数学学科有许多令人兴奋的联系,包括组合数学、表示论、代数和泊松几何,以及镜像对称、统计和高能物理。 PI将在之前的合作基础上继续系统地研究代数几何、表示论和数学物理中多种重要的坐标环中的多簇结构,并研究相应的簇代数之间的相互作用。这项研究将与本科生和研究生课程及研究项目的开发联系起来。计划开展协同活动,以促进机构间和部门间的合作,吸引来自代表性不足群体和具有不同教育背景的研究生,并通过社区外展,让高中生接触数学研究。PI 将致力于泊松几何到簇代数理论。更详细地说,该项目的主要目标包括:1)构建和研究泊松李群和泊松同质簇的广义簇结构,包括配备Belavin-Drinfeld括号的泊松李群、Drinfeld双组和Poisson-Lie对偶组。简单的泊松李群,以及 3d N = 4 SUSY 规范理论的 K 理论库仑分支; 2)泊松簇上的广义簇结构在经典和非交换离散可积系统中的应用,这些系统作为簇变换序列、统一根处量子群的表示以及更高的 Teichmuller 理论而出现。该奖项反映了 NSF 的法定使命和通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ROOTS OF CHARACTERISTIC EQUATION FOR SYMPLECTIC GROUPOID
辛群曲面特征方程的根
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chekhov, L.;Shapiro, M.;Shibo, H.
  • 通讯作者:
    Shibo, H.
Log-canonical coordinates for symplectic groupoid and cluster algebras
辛群群和簇代数的对数正则坐标
Introducing isodynamic points for binary forms and their ratios
介绍二元形式的等力点及其比率
  • DOI:
    10.1007/s40627-022-00112-4
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hägg, Christian;Shapiro, Boris;Shapiro, Michael
  • 通讯作者:
    Shapiro, Michael
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Shapiro其他文献

A Summary of General Assessment Factors for Evaluating the Quality of Scientific and Technical Information
科技信息质量评价一般评价因素综述
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Gilman;Stanley;P. Gilman;Stan Meiburg;Region;Joseph Merenda;William Muszynski;Joanne Rodman;Michael Ryan;Michael Shapiro;Elaine Stanley;Ramona Trovato;Vanessa Oei;Anna Vu;Wolgast;R. Perfetti;Thomas Baugh;Michael Brody;Reginald Cheatham;P. Cirone;John Diamante;M. Firestone;Ochp A Robert Flaak;Jerri;R. Hemmett;Lee Hofmann;Daniel Malloy;Kate Mahaffey;Carl Mazza;James Nelson;J. Orme;Rosemarie Russo;Rita Schoeny;Margaret Stasikowski;Kevin Teichman;Mary Ellen Weber;William Wood;Tracey Woodruff;Edward Bender;Kerry L Dearfield;Kathryn Gallagher
  • 通讯作者:
    Kathryn Gallagher
Multispectral image segmentation using a multiscale model
使用多尺度模型进行多光谱图像分割
Strain rate effects on the mechanical properties and fracture mode of skeletal muscle.
应变率对骨骼肌力学性能和断裂模式的影响。
Automatic structures, rational growth, and geometrically finite hyperbolic groups
自动结构、有理增长和几何有限双曲群
  • DOI:
    10.1007/bf01241129
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    W. Neumann;Michael Shapiro
  • 通讯作者:
    Michael Shapiro
Tenues and Mediae in Japanese: A Reintemretation
日语中的Tenues和Mediae:A Reintemretation
  • DOI:
    10.1515/jjl-1973-0105
  • 发表时间:
    1973
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Shapiro
  • 通讯作者:
    Michael Shapiro

Michael Shapiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Shapiro', 18)}}的其他基金

Conference Proposal: Cluster Algebra and Mathematical Physics
会议提案:团簇代数和数学物理
  • 批准号:
    1802934
  • 财政年份:
    2018
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Cluster Structures of Geometric Type
合作研究:几何类型的广义簇结构
  • 批准号:
    1702115
  • 财政年份:
    2017
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
The Physiological Genomics of Diet Switching in Mammalian Herbivores
哺乳动物草食动物饮食转换的生理基因组学
  • 批准号:
    1656497
  • 财政年份:
    2017
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: CLUSTER STRUCTURES ON POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY
合作研究:泊松李群的簇结构和完全可积性
  • 批准号:
    1362352
  • 财政年份:
    2014
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
CAREER: The domesticated pigeon as a model for avian genetics and diversity
职业:家养鸽子作为鸟类遗传学和多样性的模型
  • 批准号:
    1149160
  • 财政年份:
    2012
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cluster Algebras Approach to Poisson-Lie Groups and Higher Genus Directed Networks
协作研究:泊松李群和更高属有向网络的簇代数方法
  • 批准号:
    1101369
  • 财政年份:
    2011
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Genetic basis of morphological diversity and parallel evolution in ninespine sticklebacks
九刺棘鱼形态多样性和平行进化的遗传基础
  • 批准号:
    0744974
  • 财政年份:
    2008
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Cluster Algebras, Canonical Bases, and Nets on Surfaces of Higher Genus
协作研究:簇代数、规范基和更高属表面上的网络
  • 批准号:
    0800671
  • 财政年份:
    2008
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Hurwitz Numbers, Teichmueller Spaces, Schubert Calculus and Cluster Algebras
合作研究:Hurwitz 数、Teichmueller 空间、舒伯特微积分和簇代数
  • 批准号:
    0401178
  • 财政年份:
    2004
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9206261
  • 财政年份:
    1992
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于广义特征值方法的随机时滞系统精确控制研究
  • 批准号:
    62373178
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于广义定转子拓扑解构的爬壁机器人电磁驱动-吸附一体化机理研究
  • 批准号:
    52305022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义谱密度函数的局部平稳时间序列假设检验研究
  • 批准号:
    72303131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
广义抗差集合滤波同化方法研究及在海气耦合模式偏差订正中的应用
  • 批准号:
    42376192
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
裂缝性多孔介质流基于投影嵌入式离散裂缝模型的广义多尺度方法研究
  • 批准号:
    12301528
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
  • 批准号:
    2210388
  • 财政年份:
    2022
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Emergency General Surgery Delirium Recovery Model: A Collaborative Care Intervention
急诊普通外科谵妄恢复模型:协作护理干预
  • 批准号:
    10416631
  • 财政年份:
    2022
  • 资助金额:
    $ 36.5万
  • 项目类别:
Emergency General Surgery Delirium Recovery Model: A Collaborative Care Intervention
急诊普通外科谵妄恢复模型:协作护理干预
  • 批准号:
    10649684
  • 财政年份:
    2022
  • 资助金额:
    $ 36.5万
  • 项目类别:
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
  • 批准号:
    2210337
  • 财政年份:
    2022
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100785
  • 财政年份:
    2021
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了