Problems in Extremal Combinatorics
极值组合问题
基本信息
- 批准号:0401147
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project has two parts: an investigation of the independence numbers of the powers of fixed graphsand a study of the emergence of a giant component in `guided' versions of the classical random graph. The first part is motivated by the many open questions regarding the Shannon capacities of graphs and focuses on the possible behaviors of the sequence given by the independence numbers of the powers of a fixed graph. The odd cycles and their complements are particularlyimportant examples and play a central role in this partof the project. While a wide range of techniques -- including algebraic methods -- may be useful here, recent progress has come through the interplay of novel constructions for, and structural conditions imposed onlarge independent sets in these graph powers. In the second part of this project we study the component structure in the random graph processes known as Achlioptas processes, processes in which a pair of random edges is presented in each round and an on-linealgorithm chooses between them. Here we are interested in the existence, timing and nature of a phase transition in the size of the largest component. A principle tool here is the differential equations method for establishing concentration in random graph processes.This research is in the area of extremal combinatorics.Questions considered in this field are of the form: `How large (or small) can an object that lies in a particulardiscrete mathematical system and satisfies a certain condition be?' We are often concerned with the behavior of the size of the extremal objects as the size of the underlying system goes to infinity. Interest in such questions grew extensively during the twentieth century. Pioneers of the field, such as Paul Erd\H{o}s, posed many fascinating questions of this form and devised powerful methods for solving them even before the close connections between extremal combinatorics and various other fields (including theoretical computer science, statistical physics and information theory) were discovered. The Shannon capacities of graphs are a classic example of the close interaction between extremal combinatorics and the theory of communication. The Shannon capacity gives a measure of the optimal zero-error performance of a noisy communication channel and is centrally important in information theory. At the same time, it gives rise to natural questions in extremal combinatorics and graph theory. Some of thesequestions are addressed in this research project.
该项目有两个部分:研究固定图的力量的独立性数量,并研究了经典随机图的“指导”版本中巨型组件的出现。 第一部分是由有关图表的香农能力的许多开放问题激发的,并着重于固定图的幂的独立性数字给出的顺序的可能行为。 奇怪的周期及其补充特别重要的例子,在该项目的这一部分中起着核心作用。 尽管在这里可能有用的多种技术(包括代数方法)可能很有用,但最近的进展是通过新颖的构造的相互作用以及在这些图形幂中施加独立集合的结构条件。 在该项目的第二部分中,我们研究了被称为ACHLIOPTAS过程的随机图过程中的组件结构,其中每轮介绍了一对随机边缘,并且在它们之间选择了一对随机边缘。 在这里,我们对最大成分大小的相变的存在,时机和性质感兴趣。 这里的原理工具是在随机图过程中建立浓度的微分方程方法。这项研究位于极端组合区域。在此领域中考虑的问题的形式是:“````````````````````````````````````````````````````````````````````````````````````` 我们经常关注极端物体的大小的行为,因为基础系统的大小输入无穷大。 在20世纪,对这些问题的兴趣广泛增长。 该领域的开拓者,例如Paul Erd \ H {O},提出了许多令人着迷的问题,并设计了有力的方法,即使在极端组合和其他各个领域之间的密切联系之前,也发现了解决方案的强大方法(包括理论计算机科学,统计学物理学和信息理论)。 图形的香农能力是极端组合学与交流理论之间紧密相互作用的经典示例。 香农的能力衡量了嘈杂的通信渠道的最佳零错误性能,并且在信息理论中非常重要。 同时,它引起了极端组合和图理论的自然问题。 该研究项目解决了其中的一些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tom Bohman其他文献
A critical probability for biclique partition of <em>G</em><sub><em>n</em>,<em>p</em></sub>
- DOI:
10.1016/j.jctb.2023.12.005 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:
- 作者:
Tom Bohman;Jakob Hofstad - 通讯作者:
Jakob Hofstad
How many random edges make a dense graph Hamiltonian ?
有多少条随机边构成稠密图哈密顿量?
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Tom Bohman - 通讯作者:
Tom Bohman
Game chromatic index of graphs with given restrictions on degrees
- DOI:
10.1016/j.tcs.2008.05.026 - 发表时间:
2008-11-06 - 期刊:
- 影响因子:
- 作者:
Andrew Beveridge;Tom Bohman;Alan Frieze;Oleg Pikhurko - 通讯作者:
Oleg Pikhurko
Preventing Bullying and Sexual Harassment in Elementary Schools
防止小学欺凌和性骚扰
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
E. Sanchez;T. Robertson;C. M. Lewis;Barri Rosenbluth;Tom Bohman;D. Casey - 通讯作者:
D. Casey
Anti-Ramsey properties of random graphs
- DOI:
10.1016/j.jctb.2009.09.002 - 发表时间:
2010-05-01 - 期刊:
- 影响因子:
- 作者:
Tom Bohman;Alan Frieze;Oleg Pikhurko;Cliff Smyth - 通讯作者:
Cliff Smyth
Tom Bohman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tom Bohman', 18)}}的其他基金
Probabilistic and Extremal Combinatorics
概率和极值组合学
- 批准号:
2246907 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Conference: 21st International Conference on Random Structures & Algorithms
会议:第21届国际随机结构会议
- 批准号:
2309068 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
17th International Conference on Random Structures and Algorithms
第十七届随机结构与算法国际会议
- 批准号:
1506338 - 财政年份:2015
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Extremal and Probabilistic Combinatorics via Regularity and Graph Limits
通过正则性和图极限的极值和概率组合
- 批准号:
1100215 - 财政年份:2011
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Probabilistic and Extremal Combinatorics
概率和极值组合学
- 批准号:
1001638 - 财政年份:2010
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Probabilistic and Extremal Combinatorics
概率和极值组合学
- 批准号:
0701183 - 财政年份:2007
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627408 - 财政年份:1996
- 资助金额:
$ 10.5万 - 项目类别:
Fellowship Award
相似国自然基金
高温高压极端条件下硬质陶瓷复合材料的合成和表征
- 批准号:12364005
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
固相荧光内滤用于极端条件下砷、硫、碘等易变价离子的现场分析研究
- 批准号:22376144
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
逐时降水随机模型构建与极端降水变化评估
- 批准号:42307424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
长江中下游典型农作物碳氮比对极端天气气候事件的响应解析
- 批准号:42371046
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
极端气候事件的牧户行为响应与发展韧性研究:基于支持政策视角
- 批准号:72373145
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
- 批准号:
2401414 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
- 批准号:
2246641 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Extremal Combinatorics: Problems and Algorithmic Aspects
极值组合学:问题和算法方面
- 批准号:
2154082 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
CAREER: Problems in Extremal and Probabilistic Combinatorics
职业:极值和概率组合问题
- 批准号:
2146406 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Problems in Extremal Combinatorics with Applications to Statistical Physics
极值组合问题及其在统计物理中的应用
- 批准号:
574977-2022 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
University Undergraduate Student Research Awards