Extremal Combinatorics
极值组合学
基本信息
- 批准号:0100400
- 负责人:
- 金额:$ 9.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator is interested in a wide range of questions from extremal combinatorics and related fields. A common theme is the exploration of new ideas for the construction of extremal objects; in particular, the investigator suggests new ideas for constructions in the settings of Shannon capacity, the lonely runner conjecture, and combinatorial discrepancy. In the area of Shannon capacity, the investigator has developed a new construction for independent sets in the powers of odd cycles that is, in a sense, asymptotically optimal. It is hoped that the algebraic ideas used in this construction can be further developed to give more insight into the Shannon capacities of odd cycles. The investigator suggests a similar algebraic approach to a number of conjectures (conjectures that follow from recent work of R. Holzman, D. Kleitman and the investigator) concerning the extremal objects for the so-called lonely runner conjecture. The research on combinatorial discrepancy is motivated by a conjecture of Lovasz, Spencer and Vestergombi on the relationship between the linear discrepancy and hereditary discrepancy of a hypergraph. In addition to work on new constructions, this research includes questions in the fields of random graphs and the combinatorics of cellular automata.Questions considered in extremal combinatorics are of the form: `How large (or small) can an object that lies in a particular discrete mathematical system and satisfies a certain condition be?' We are usually interested in the size of extremal objects for very large systems. Interest in such questions grew extensively during the twentieth century. Pioneers of the field, such as Paul Erdos, had posed many fascinating questions of this form and had devised powerful methods for solving them even before the close connections between extremal combinatorics and various other fields (including computer science, statistical physics and information theory) had been discovered. Shannon capacity is a prime example of the significant link between extremal combinatorics and information theory. Shannon capacity gives a measure of the zero-error performance of a noisy communications channel. The investigator has developed new, near--optimal codes for some notoriously difficult channels, and the proposed research includes further development of these codes with the goal of determining the zero-error optimum of these channels. The study of cellular automata has been part of the recent interaction between extremal combinatorics and statistical physics. Cellular automata are discrete dynamical systems that have been used to model a wide range of physical phenomena. The investigator proposes research on the regularity of growth of certain cellular automata that model crystal growth. This work is expected to have impact on our understanding of the shapes achieved by these models and their randomized counterparts.
研究人员对极端组合和相关领域的各种问题感兴趣。 一个共同的主题是探索建造极端物体的新思想。特别是,调查员提出了在香农能力,孤独的跑步者猜想和组合差异的环境中建造的新想法。 在香农容量的领域,研究人员开发了一种新的结构,用于奇数循环的独立集,从某种意义上说,这是渐近最佳的。 希望可以进一步开发出这种结构中使用的代数思想,以便更多地了解奇数周期的香农能力。 研究人员建议对许多猜想进行类似的代数方法(从R. Holzman,D。Kleitman和研究者的最新工作中遵循的猜想)就所谓的孤独跑步者猜想的最大对象。 关于组合差异的研究是由Lovasz,Spencer和Vestergombi的猜想引起的,该研究是关于线性差异与超图的遗传性差异之间关系的。 除了从事新结构的工作外,这项研究还包括随机图和蜂窝自动机的组合的问题。极端组合学中考虑的问题的形式是:`````````` 我们通常对非常大系统的极端物体的大小感兴趣。 在20世纪,对这些问题的兴趣广泛增长。 该领域的先驱,例如保罗·埃尔多斯(Paul Erdos),提出了许多令人着迷的这种形式的问题,并设计了有力的方法来解决它们,甚至在发现了极端组合和其他各个领域(包括计算机科学,统计物理学和信息理论)之间的密切联系之前就解决了这些形式。 香农能力是极端组合学与信息理论之间重要联系的一个主要例子。 香农的容量衡量了嘈杂的通信渠道的零错误性能。 研究人员为一些臭名昭著的渠道开发了新的,近乎最佳的代码,拟议的研究包括进一步开发这些代码,目的是确定这些渠道的零错误最佳。 细胞自动机的研究已成为极端组合和统计物理学之间最近相互作用的一部分。 细胞自动机是离散的动力系统,用于对广泛的物理现象进行建模。 研究者提出了对某些细胞自动机的生长的规律性研究,以模拟晶体生长。 预计这项工作会影响我们对这些模型及其随机同行所达到的形状的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tom Bohman其他文献
A critical probability for biclique partition of <em>G</em><sub><em>n</em>,<em>p</em></sub>
- DOI:
10.1016/j.jctb.2023.12.005 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:
- 作者:
Tom Bohman;Jakob Hofstad - 通讯作者:
Jakob Hofstad
How many random edges make a dense graph Hamiltonian ?
有多少条随机边构成稠密图哈密顿量?
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Tom Bohman - 通讯作者:
Tom Bohman
Game chromatic index of graphs with given restrictions on degrees
- DOI:
10.1016/j.tcs.2008.05.026 - 发表时间:
2008-11-06 - 期刊:
- 影响因子:
- 作者:
Andrew Beveridge;Tom Bohman;Alan Frieze;Oleg Pikhurko - 通讯作者:
Oleg Pikhurko
Preventing Bullying and Sexual Harassment in Elementary Schools
防止小学欺凌和性骚扰
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
E. Sanchez;T. Robertson;C. M. Lewis;Barri Rosenbluth;Tom Bohman;D. Casey - 通讯作者:
D. Casey
Anti-Ramsey properties of random graphs
- DOI:
10.1016/j.jctb.2009.09.002 - 发表时间:
2010-05-01 - 期刊:
- 影响因子:
- 作者:
Tom Bohman;Alan Frieze;Oleg Pikhurko;Cliff Smyth - 通讯作者:
Cliff Smyth
Tom Bohman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tom Bohman', 18)}}的其他基金
Probabilistic and Extremal Combinatorics
概率和极值组合学
- 批准号:
2246907 - 财政年份:2023
- 资助金额:
$ 9.17万 - 项目类别:
Continuing Grant
Conference: 21st International Conference on Random Structures & Algorithms
会议:第21届国际随机结构会议
- 批准号:
2309068 - 财政年份:2023
- 资助金额:
$ 9.17万 - 项目类别:
Standard Grant
17th International Conference on Random Structures and Algorithms
第十七届随机结构与算法国际会议
- 批准号:
1506338 - 财政年份:2015
- 资助金额:
$ 9.17万 - 项目类别:
Standard Grant
Extremal and Probabilistic Combinatorics via Regularity and Graph Limits
通过正则性和图极限的极值和概率组合
- 批准号:
1100215 - 财政年份:2011
- 资助金额:
$ 9.17万 - 项目类别:
Standard Grant
Probabilistic and Extremal Combinatorics
概率和极值组合学
- 批准号:
1001638 - 财政年份:2010
- 资助金额:
$ 9.17万 - 项目类别:
Continuing Grant
Probabilistic and Extremal Combinatorics
概率和极值组合学
- 批准号:
0701183 - 财政年份:2007
- 资助金额:
$ 9.17万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627408 - 财政年份:1996
- 资助金额:
$ 9.17万 - 项目类别:
Fellowship Award
相似国自然基金
大豆玉米秸秆组合还田分解和向土壤有机碳转化的过程及其生物学机制
- 批准号:42377338
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Schubert演算的组合学
- 批准号:12371329
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
齿菌属(Hydnum)的系统学与菌根组合类型研究
- 批准号:32300002
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
病证结合“症状-症状组合-证候”基因组测序层面生物学基础研究的新方法学研究
- 批准号:82174237
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于多组学数据的癌症合成致死基因组合的研究
- 批准号:62171236
- 批准年份:2021
- 资助金额:64 万元
- 项目类别:面上项目
相似海外基金
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
- 批准号:
2401414 - 财政年份:2023
- 资助金额:
$ 9.17万 - 项目类别:
Continuing Grant
Discrete Geometry and Extremal Combinatorics
离散几何和极值组合
- 批准号:
2246659 - 财政年份:2023
- 资助金额:
$ 9.17万 - 项目类别:
Standard Grant
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
- 批准号:
2246641 - 财政年份:2023
- 资助金额:
$ 9.17万 - 项目类别:
Continuing Grant
Probabilistic and Extremal Combinatorics
概率和极值组合学
- 批准号:
2246907 - 财政年份:2023
- 资助金额:
$ 9.17万 - 项目类别:
Continuing Grant
Extremal Combinatorics Exact Bounds
极值组合精确界
- 批准号:
574168-2022 - 财政年份:2022
- 资助金额:
$ 9.17万 - 项目类别:
University Undergraduate Student Research Awards