Probabilistic and Extremal Combinatorics

概率和极值组合学

基本信息

  • 批准号:
    2246907
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

This research project is an investigation of discrete mathematical objects like networks and codes. Extremal combinatorics is focused on developing a better understanding of discrete mathematical objects that optimize interesting or desirable properties, while probabilistic combinatorics studies discrete mathematical objects that are generated by a series of random choices. These two research directions are intimately related as randomized algorithms are a remarkably powerful tool for the construction of interesting discrete mathematical objects. Furthermore, randomness is a major theme of the work on extremal problems for discrete structures as a deep understanding of the ways in which deterministic objects mimic their randomized counterparts often leads to major progress. This research has the potential to benefit society through the development of new algorithms for computational problems on large networks, new methods for analyzing existing network algorithms, and new codes and communication protocols. The project also provides training opportunities at both the undergraduate and graduate level.This research is in the broad areas of probabilistic and extremal combinatorics. The work in probabilistic combinatorics is focused on very sharp concentration of global parameters of the binomial random graph and problems regarding the decomposition of the edge set of the uniform random graph into cliques or bicliques. The work on sharp concentration in the binomial random graph is motivated by a recent result of the investigator and a doctoral student that establishes 2-point concentration of the independence number of the binomial random graph over a broad range of the probability parameter. The comprehensive understanding of the extent of concentration of the independence number of the binomial random graph is one of the goals of this part of the research program. This project also includes further study of the fascinating lonely runner conjecture and some problems on Ramsey numbers for hypergraphs and posets. While the structures that we consider in these two contexts are not necessarily random, we expect the interplay of structure and randomness (i.e. pseudorandom properties of discrete structures) to play a major role. The ultimate goal of this research is to find new methods that are broadly applicable in discrete mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目是对网络和代码等离散数学对象的研究。极端组合物的重点是对优化有趣或理想的属性的离散数学对象进行更好的理解,而概率组合学研究由一系列随机选择产生的离散数学对象。这两个研究方向是密切相关的,因为随机算法是构建有趣的离散数学对象的非常强大的工具。此外,随机性是关于离散结构的极端问题的主要主题,这是对确定性对象模仿其随机对应物的方式的深刻理解。这项研究有可能通过开发大型网络上的计算问题,分析现有网络算法的新方法以及新的代码和通信协议来使社会受益。该项目还在本科和研究生层面提供培训机会。这项研究在概率和极端组合学的广泛领域。概率组合学中的工作集中在二项式随机图的全局参数的非常清晰的浓度上,以及有关均匀随机图的边缘集合中的分解成簇或双质量的问题。二项式随机图中急剧浓度的工作是由研究者和博士生的最新结果激励的,该研究人员在广泛的概率参数上建立了二项式随机图的独立性数的2分浓度。对二项式随机图的独立性浓度程度的全面理解是研究计划的这一部分的目标之一。该项目还包括进一步研究迷人的孤独跑步者的猜想,以及有关超图和Posets的Ramsey数字的一些问题。尽管我们在这两种情况下考虑的结构不一定是随机的,但我们期望结构和随机性的相互作用(即离散结构的伪内属性)起着主要作用。这项研究的最终目的是找到广泛适用于离散数学的新方法。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Tom Bohman其他文献

A critical probability for biclique partition of <em>G</em><sub><em>n</em>,<em>p</em></sub>
  • DOI:
    10.1016/j.jctb.2023.12.005
    10.1016/j.jctb.2023.12.005
  • 发表时间:
    2024-05-01
    2024-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tom Bohman;Jakob Hofstad
    Tom Bohman;Jakob Hofstad
  • 通讯作者:
    Jakob Hofstad
    Jakob Hofstad
How many random edges make a dense graph Hamiltonian ?
有多少条随机边构成稠密图哈密顿量?
  • DOI:
  • 发表时间:
    2001
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tom Bohman
    Tom Bohman
  • 通讯作者:
    Tom Bohman
    Tom Bohman
Game chromatic index of graphs with given restrictions on degrees
  • DOI:
    10.1016/j.tcs.2008.05.026
    10.1016/j.tcs.2008.05.026
  • 发表时间:
    2008-11-06
    2008-11-06
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Beveridge;Tom Bohman;Alan Frieze;Oleg Pikhurko
    Andrew Beveridge;Tom Bohman;Alan Frieze;Oleg Pikhurko
  • 通讯作者:
    Oleg Pikhurko
    Oleg Pikhurko
Preventing Bullying and Sexual Harassment in Elementary Schools
防止小学欺凌和性骚扰
  • DOI:
  • 发表时间:
    2001
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Sanchez;T. Robertson;C. M. Lewis;Barri Rosenbluth;Tom Bohman;D. Casey
    E. Sanchez;T. Robertson;C. M. Lewis;Barri Rosenbluth;Tom Bohman;D. Casey
  • 通讯作者:
    D. Casey
    D. Casey
Anti-Ramsey properties of random graphs
  • DOI:
    10.1016/j.jctb.2009.09.002
    10.1016/j.jctb.2009.09.002
  • 发表时间:
    2010-05-01
    2010-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tom Bohman;Alan Frieze;Oleg Pikhurko;Cliff Smyth
    Tom Bohman;Alan Frieze;Oleg Pikhurko;Cliff Smyth
  • 通讯作者:
    Cliff Smyth
    Cliff Smyth
共 5 条
  • 1
前往

Tom Bohman的其他基金

Conference: 21st International Conference on Random Structures & Algorithms
会议:第21届国际随机结构会议
  • 批准号:
    2309068
    2309068
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Standard Grant
    Standard Grant
17th International Conference on Random Structures and Algorithms
第十七届随机结构与算法国际会议
  • 批准号:
    1506338
    1506338
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Standard Grant
    Standard Grant
Extremal and Probabilistic Combinatorics via Regularity and Graph Limits
通过正则性和图极限的极值和概率组合
  • 批准号:
    1100215
    1100215
  • 财政年份:
    2011
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Standard Grant
    Standard Grant
Probabilistic and Extremal Combinatorics
概率和极值组合学
  • 批准号:
    1001638
    1001638
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Probabilistic and Extremal Combinatorics
概率和极值组合学
  • 批准号:
    0701183
    0701183
  • 财政年份:
    2007
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Problems in Extremal Combinatorics
极值组合问题
  • 批准号:
    0401147
    0401147
  • 财政年份:
    2004
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Standard Grant
    Standard Grant
Extremal Combinatorics
极值组合学
  • 批准号:
    0100400
    0100400
  • 财政年份:
    2001
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9627408
    9627408
  • 财政年份:
    1996
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Fellowship Award
    Fellowship Award

相似国自然基金

高温高压极端条件下硬质陶瓷复合材料的合成和表征
  • 批准号:
    12364005
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
固相荧光内滤用于极端条件下砷、硫、碘等易变价离子的现场分析研究
  • 批准号:
    22376144
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
逐时降水随机模型构建与极端降水变化评估
  • 批准号:
    42307424
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
长江中下游典型农作物碳氮比对极端天气气候事件的响应解析
  • 批准号:
    42371046
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
极端气候事件的牧户行为响应与发展韧性研究:基于支持政策视角
  • 批准号:
    72373145
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Problems in Extremal and Probabilistic Combinatorics
职业:极值和概率组合问题
  • 批准号:
    2146406
    2146406
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Extremal and Probabilistic Combinatorics
极值和概率组合学
  • 批准号:
    2763343
    2763343
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Studentship
    Studentship
Algebraic and Probabilistic Methods in Extremal Combinatorics
极值组合中的代数和概率方法
  • 批准号:
    2100157
    2100157
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Standard Grant
    Standard Grant
Applications of probabilistic combinatorics and extremal set theory to deriving bounds in classical and quantum coding theory
概率组合学和极值集合论在经典和量子编码理论中推导界限的应用
  • 批准号:
    20K11668
    20K11668
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Algebraic and Probabilistic Methods in Extremal Combinatorics
极值组合中的代数和概率方法
  • 批准号:
    1953772
    1953772
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
    $ 24万
  • 项目类别:
    Standard Grant
    Standard Grant