p-adic Cohomology and Applications

p-进上同调及其应用

基本信息

  • 批准号:
    0400727
  • 负责人:
  • 金额:
    $ 12.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

Abstract for the award of Kiran Kedlaya DMS-0400272p-adic analysis, initiated by Hensel at the turn of the last century,seeks to bring the "continuous" techniques of calculus to bear on"discrete" problems in number theory. We study applications of p-adicanalysis in arithmetic algebraic geometry; a typical problem is to countsolutions of systems of polynomial equations. We work on one hand onimproving our theoretical understanding of this problem, and on the otherhand on developing practical algorithms for treating important specialcases. Some of these cases occur in applications to cryptography, errorcorrecting codes, and other areas of computer science.More specifically, we are developing Berthelot's rigid cohomology in parallel with the older theory of etale cohomology, which is better understood theoretically but ill-equipped for explicit computations.One long-term goal is to extend Lafforgue's work on the function field Langlands correspondence to p-adic sheaves (crystals). In another direction, we are investigating algorithms for computing in p-adic cohomology, which may have mathematical applications on top of the practical ones mentioned above.
Hensel在上个世纪初发起的Kiran Kedlaya DMS-0400272P-ADIC分析奖励摘要,试图将微积分的“连续”技术带入数字理论中的“离散”问题。我们研究了p- adicanalysis在算术代数几何形状中的应用;一个典型的问题是多项式方程系统的计数。一方面,我们努力研究了我们对这个问题的理论理解,而另一方面,我们就开发了用于治疗重要特种商品的实用算法。其中一些情况发生在密码学,错误正确的代码以及计算机科学领域的应用中。更具体地说,我们正在与较旧的Etale同胞理论平行地开发Berthelot的刚性刚性共同体,这是理论上更好地理解的,但在理论上是不合适的,但要进行详细的计算。一个长期的目标是扩展了Lafforgue在lafforgue的工作范围,即在lafforgue的工作中扩展了该功能(PRAFFINGE)。在另一个方向上,我们正在研究用于计算P-ADIC共同体计算的算法,该算法可能在上面提到的实用方法上具有数学应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kiran Kedlaya其他文献

Kiran Kedlaya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kiran Kedlaya', 18)}}的其他基金

p-Adic Computation of L-Functions at Scale
大规模 L 函数的 p-Adic 计算
  • 批准号:
    2053473
  • 财政年份:
    2021
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Continuing Grant
Nonarchimedean Analysis, Geometry, and Computation
非阿基米德分析、几何和计算
  • 批准号:
    1802161
  • 财政年份:
    2018
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Continuing Grant
Local-Global Principles in Arithmetic
算术中的局部全局原理
  • 批准号:
    1844206
  • 财政年份:
    2018
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Standard Grant
Applications and extensions of p-adic Hodge theory
p进Hodge理论的应用和扩展
  • 批准号:
    1501214
  • 财政年份:
    2015
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Standard Grant
ANTS-X: Algorithmic Number Theory Symposium 2012
ANTS-X:2012年算法数论研讨会
  • 批准号:
    1156412
  • 财政年份:
    2012
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Standard Grant
Between ordinary and p-adic Hodge theory
普通 Hodge 理论与 p-adic Hodge 理论之间
  • 批准号:
    1101343
  • 财政年份:
    2011
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Continuing Grant
CAREER: Cohomological Methods in Algebraic Geometry and Number Theory
职业:代数几何和数论中的上同调方法
  • 批准号:
    0545904
  • 财政年份:
    2006
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Standard Grant
Birational geometry and spaces of rational curves
双有理几何和有理曲线空间
  • 批准号:
    0353692
  • 财政年份:
    2004
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Continuing Grant
Overconvergent Crystals and Modular Forms
过会聚晶体和模块化形式
  • 批准号:
    0071597
  • 财政年份:
    2000
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于单细胞多组学解析不同时间段运动改善超重个体代谢的免疫图谱与调控网络
  • 批准号:
    32371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
构建同时识别原癌信号和抑癌信号的合成生物学基因线路
  • 批准号:
    32101169
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
构建同时识别原癌信号和抑癌信号的合成生物学基因线路
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于不同时间尺度约束的东昆仑断裂东段运动学特征研究
  • 批准号:
    41872226
  • 批准年份:
    2018
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
基于多组学数据整合的不同时期胃癌动态调控机制研究
  • 批准号:
    31801118
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dual complexes and weight filtrations: Applications to cohomology of moduli spaces and invariants of singularities
对偶复形和权重过滤:模空间上同调和奇点不变量的应用
  • 批准号:
    2302475
  • 财政年份:
    2023
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Continuing Grant
Toric vector bundles: Stability, Cohomology, and Applications.
环面向量丛:稳定性、上同调和应用。
  • 批准号:
    EP/T018836/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Fellowship
Theory of relative cohomology for various complexes of fine sheaves and its applications
各种细滑轮复合体的相对上同调理论及其应用
  • 批准号:
    20K03572
  • 财政年份:
    2020
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Motivic methods: foundations and applications
动机方法:基础和应用
  • 批准号:
    19K14498
  • 财政年份:
    2019
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Cohomology and Representations of Finite and Algebraic Groups with Applications
有限代数群的上同调和表示及其应用
  • 批准号:
    1901595
  • 财政年份:
    2019
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了