Cohomology and Representations of Finite and Algebraic Groups with Applications

有限代数群的上同调和表示及其应用

基本信息

  • 批准号:
    1901595
  • 负责人:
  • 金额:
    $ 31.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project will involve the study of finite and algebraic groups and in particular their actions on linear spaces and varieties. Groups are one of the fundamental tools in mathematics and arise in many areas including analysis, geometry and number theory as well as in the study of symmetries in chemistry and physics. The classification of finite simple groups was completed in 2006 and has led to a revolution in using group theory to study other fields. The classification basically says that the finite simple groups are analogs of the simple Lie groups and so to understand them, one must study simple Lie and algebraic groups. The best way to understand and use group theory is to study the action of groups on different objects. One aspect of this project is to understand groups acting on Riemann surfaces (and their analog over finite fields). This will lead to a new fundamental understanding of basic objects including rational functions and should lead to advances in cryptography and fundamental problems in number theory. The utility of group theory has also been greatly expanded due to advances in computation. Another aspect of this project is to find useful presentations of the finite simple groups which will lead to more computational efficiency. A third important problem addressed in this project is to greatly generalize what is called the Tits alternative. This will lead to results showing the existence (and construction) of expander graphs. These are graphs that are highly connected relative to the number of edges in them. This has been of great importance in computer science. Graduate students will be trained through research. In particular, we plan to study the problem of producing strongly dense subgroups of semisimple algebraic groups and proving a generalization of the Tits alternative. This will give some new results about superstrong approximation in number theory and results on expander graphs. Earlier results of the PI, with Breuillard, Green, and Tao, will be generalized using new stronger methods. We also want to prove the conjecture that every finite simple group has a presentation with two generators and at most four relations. This should lead to advances in computational number theory. Deep results in group theory have led to major advances in basic problems about bijective polynomials over finite fields (viewed as mappings on a smooth projective curve) and has had applications to cryptography and solved problems over a century old. Another goal of the project is to completely classify monodromy groups of coverings of low genus Riemann surfaces leading to fundamental breakthroughs in number theory and also to classify monodromy groups of mappings from generic Riemann surfaces (first studied in Zariski's thesis). Finally, we want to classify generic stabilizers for simple algebraic groups in irreducible linear representations. This has been done in characteristic zero but new ideas are required in positive characteristic. This will have consequences for essential dimension and some special cases will fit into the program of Bhargava to solve interesting classification problems of algebraic families.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将涉及对有限和代数群体的研究,尤其是它们对线性空间和品种的行为。小组是数学中的基本工具之一,在许多领域都出现,包括分析,几何学和数理论以及化学和物理学对称性的研究。有限简单组的分类于2006年完成,并导致了使用小组理论研究其他领域的革命。分类基本上说,有限的简单组是简单的谎言组的类似物,因此,要理解它们,必须研究简单的谎言和代数组。理解和使用群体理论的最佳方法是研究小组对不同对象的作用。该项目的一个方面是了解作用于Riemann表面(及其在有限领域的类似物)上的群体。这将导致对包括理性功能在内的基本对象的新基本理解,并应导致密码学和数字理论中的基本问题的进步。由于计算的进步,小组理论的实用性也大大扩展了。该项目的另一个方面是找到有限简单组的有用演示,这将提高计算效率。该项目中解决的第三个重要问题是极大地概括了所谓的山雀替代方案。这将导致结果显示扩展器图的存在(和构造)。这些图形相对于其中的边数高度连接。这在计算机科学中非常重要。研究生将通过研究培训。特别是,我们计划研究产生半密度代数群体的密度密度亚组的问题,并证明山雀替代方案的概括。这将为数字理论和扩展器图上的superstrong近似值提供一些新的结果。 Breuillard,Green和Tao的PI的早期结果将使用新的强方法进行概括。我们还想证明每个有限简单组都有两个发电机和最多四个关系的介绍。这应该导致计算数理论的进步。小组理论的深刻结果导致了关于有限领域的徒多项式基本问题的重大进展(视为平滑的投射曲线上的映射),并在一个世纪以上的密码学和解决问题上应用了问题。该项目的另一个目标是完全对低属的覆盖物的单型组进行分类,从而导致数量理论的基本突破,并从通用的Riemann表面进行分类(首次在Zariski的论文中研究)。最后,我们希望将简单代数组的通用稳定器分类为不可还原线性表示。这是以零特征进行的,但是在积极特征中需要新的想法。这将对基本维度产生后果,一些特殊情况将适合Bhargava计划,以解决代数家庭的有趣分类问题。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响审查标准来评估的支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generic Stabilizers for Simple Algebraic Groups
  • DOI:
    10.1307/mmj/20217216
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    S. Garibaldi;R. Guralnick
  • 通讯作者:
    S. Garibaldi;R. Guralnick
The spread of a finite group
  • DOI:
    10.4007/annals.2021.193.2.5
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy C. Burness;R. Guralnick;Scott Harper
  • 通讯作者:
    Timothy C. Burness;R. Guralnick;Scott Harper
GENERICALLY FREE REPRESENTATIONS III: EXTREMELY BAD CHARACTERISTIC
一般免费的表现 III:极其糟糕的特征
  • DOI:
    10.1007/s00031-020-09590-4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Garibaldi, S.;Guralnick, R.
  • 通讯作者:
    Guralnick, R.
Fixed point ratios for finite primitive groups and applications
有限基元组和应用的定点比率
  • DOI:
    10.1016/j.aim.2022.108778
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Burness, Timothy C.;Guralnick, Robert M.
  • 通讯作者:
    Guralnick, Robert M.
Topological generation of exceptional algebraic groups
特殊代数群的拓扑生成
  • DOI:
    10.1016/j.aim.2020.107177
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Burness, Timothy C.;Gerhardt, Spencer;Guralnick, Robert M.
  • 通讯作者:
    Guralnick, Robert M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Guralnick其他文献

The automorphism groups of a family of maximal curves
  • DOI:
    10.1016/j.jalgebra.2012.03.036
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Guralnick;Beth Malmskog;Rachel Pries
  • 通讯作者:
    Rachel Pries
On rational and concise words
  • DOI:
    10.1016/j.jalgebra.2015.02.003
  • 发表时间:
    2015-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Guralnick;Pavel Shumyatsky
  • 通讯作者:
    Pavel Shumyatsky
Primitive monodromy groups of genus at most two
  • DOI:
    10.1016/j.jalgebra.2014.06.020
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Frohardt;Robert Guralnick;Kay Magaard
  • 通讯作者:
    Kay Magaard

Robert Guralnick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Guralnick', 18)}}的其他基金

IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales
IntBIO 合作研究:评估大陆尺度固氮共生的驱动因素
  • 批准号:
    2316267
  • 财政年份:
    2023
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Ranges: Building Capacity to Extend Mammal Specimens from Western North America
合作研究:范围:建设能力以扩展北美西部的哺乳动物标本
  • 批准号:
    2228392
  • 财政年份:
    2023
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Phenobase: Community, infrastructure, and data for global-scale analyses of plant phenology
合作研究:Phenobase:用于全球范围植物物候分析的社区、基础设施和数据
  • 批准号:
    2223512
  • 财政年份:
    2022
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIBR: Leaping the Specimen Digitization Gap: Connecting Novel Tools, Machine Learning and Public Participation to Label Digitization Efforts
合作研究:CIBR:跨越标本数字化差距:将新工具、机器学习和公众参与与标签数字化工作联系起来
  • 批准号:
    2027234
  • 财政年份:
    2021
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Standard Grant
Collaborative Research: LightningBug, An Integrated Pipeline to Overcome The Biodiversity Digitization Gap
合作研究:LightningBug,克服生物多样性数字化差距的综合管道
  • 批准号:
    2104152
  • 财政年份:
    2021
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Origins and drivers of extinction of Caribbean Avifauna
合作研究:加勒比鸟类灭绝的起源和驱动因素
  • 批准号:
    2033905
  • 财政年份:
    2021
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Genealogy of Odonata (GEODE): Dispersal and color as drivers of 300 million years of global dragonfly evolution
合作研究:蜻蜓目 (GEODE) 谱系:传播和颜色是 3 亿年全球蜻蜓进化的驱动力
  • 批准号:
    2002457
  • 财政年份:
    2020
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
IIBR RoL: Collaborative Research: A Rules Of Life Engine (RoLE) Model to Uncover Fundamental Processes Governing Biodiversity
IIBR RoL:协作研究:揭示生物多样性基本过程的生命规则引擎 (RoLE) 模型
  • 批准号:
    1927286
  • 财政年份:
    2019
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    1759898
  • 财政年份:
    2018
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Standard Grant
Cohomology, Representations, and Coverings of Curves
曲线的上同调、表示和覆盖
  • 批准号:
    1600056
  • 财政年份:
    2016
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

李代数与有限W代数的Whittaker型表示和有限维表示
  • 批准号:
    12371026
  • 批准年份:
    2023
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
有限维连通Hopf代数的结构与表示
  • 批准号:
    12371039
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
有限群的高阶表示
  • 批准号:
    12371016
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
有限群及其表示中的代数与组合结构
  • 批准号:
    12371019
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
有限群概形的饱和秩及其模表示
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Presentations, Cohomology, Representations of Finite Groups and Coverings of Curves
演示、上同调、有限群表示和曲线覆盖
  • 批准号:
    1302886
  • 财政年份:
    2013
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
Modular representations and cohomology for algebraic, finite and quantum groups
代数群、有限群和量子群的模表示和上同调
  • 批准号:
    1001900
  • 财政年份:
    2010
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Standard Grant
Presentations, Cohomology and Representations of Finite Groups and Coverings of Curves
有限群和曲线覆盖的表示、上同调和表示
  • 批准号:
    1001962
  • 财政年份:
    2010
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Continuing Grant
離散群の様々な擬等長不変量と群の表示との関係の解明
阐明离散群的各种拟等距不变量与群表示之间的关系
  • 批准号:
    09J01484
  • 财政年份:
    2009
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Geometric aspects of representations and cohomology of finite dimensional algebras
有限维代数表示和上同调的几何方面
  • 批准号:
    0629156
  • 财政年份:
    2005
  • 资助金额:
    $ 31.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了