Local-Global Principles in Arithmetic

算术中的局部全局原理

基本信息

  • 批准号:
    1844206
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

Number theory is one of the oldest branches of mathematics, and yet it continues to have more and more applications within the sciences. In this project, the principal investigator (PI) will investigate the relationship between two of the main focuses of number theory, both of which are utilized in computer science as well as physics: (1) prime numbers and the divisibility of integers and (2) algebraic solutions to polynomial equations. The fundamental idea is to understand the extent to which global objects can be arithmetically determined by the collection of its local pieces. The strategies and techniques that will be utilized in this project originate in a broad range of other mathematical subjects, including analysis, geometry, algebra and in some cases, statistics. Some of the specific questions the PI is interested in are at a level accessible to undergraduate and high-school students, and throughout the course of the project, the PI plans to utilize this to continue in educational efforts supporting an increase in diversity within mathematics. This project surrounds the widespread phenomenon of local-global principles throughout algebraic and analytic number theory, ranging from understanding obstructions of unique prime factorization in rings of integers to determining the asymptotic number of global fields with fixed invariants via the number of local extensions with fixed p-adic invariants to proving local-global compatibility results within the Langlands program. First, the PI will conduct research that furthers the statistical study of class groups that originated with the Cohen-Lenstra heuristics; amongst others, this will include proving asymptotics for class groups of families of orders. Second, the PI will study number field distributions and the local-global principles that can control their asymptotics, beginning with the case of octic quaternion number fields. The strategy for obtaining such results will rely on arithmetic invariant theory, sieve methods, and geometry-of-numbers techniques utilized frequently in the field of arithmetic statistics. On the automorphic side, the PI will investigate arithmetic and geometric properties of p-adic families of Galois representations arising from non-conjugate self-dual regular algebraic automorphic representations of the general linear group over CM fields. This will involve studying eigenvarieties and strengthening p-adic interpolation methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数字理论是数学最古老的分支之一,但是它在科学中仍然具有越来越多的应用。在该项目中,首席研究员(PI)将研究数字理论的两个主要重点之间的关系,它们都用于计算机科学以及物理学:(1)整数和(2)对多种方程式的代数解决方案。基本的想法是了解可以通过其本地作品收集来确定全球对象的程度。该项目中将使用的策略和技术源于广泛的其他数学主题,包括分析,几何,几何,代数,在某些情况下,统计数据。 PI感兴趣的一些特定问题是本科生和高中生可以解决的水平,在整个项目过程中,PI计划利用这一点继续进行教育工作,以支持数学内多样性的增加。该项目围绕着整个代数和分析数理论的局部全球原则的广泛现象,从了解整数环的独特质量分解的障碍物到确定具有固定不变性的固定不变性的渐近全球次数通过固定的padic adadic gunvariants的数量来证明固定的不变性的局部性局部性局部范围的局部性综合性。首先,PI将进行研究,以进一步发展起源于Cohen-Lenstra启发式方法的课堂群体的统计研究。除其他外,这将包括证明对命令家庭阶级群体的渐近学。其次,PI将研究可以控制其渐近药的局部全球原则,从八粒四元数字段开始。获得此类结果的策略将依赖于算术不变理论,筛分方法和数量的数量技术在算术统计领域经常使用。在自态方面,PI将研究由CM场上一般线性组的非偶联的自偶常规代数自动形式表示,在CM领域的非偶联的自偶常规代数自动形式表示引起的GALOIS表示的P-ADIC家族的算术和几何特性。这将涉及研究特征值并加强P-ADIC插值方法。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differential Operators and Families of Automorphic Forms on Unitary Groups of Arbitrary Signature
  • DOI:
    10.25537/dm.2018v23.445-495
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    E. Eischen;Jessica Fintzen;E. Mantovan;Ila Varma
  • 通讯作者:
    E. Eischen;Jessica Fintzen;E. Mantovan;Ila Varma
The number of $D_4$-fields ordered by conductor
按指挥排序的 $D_4$ 字段的数量
共 2 条
  • 1
前往

Kiran Kedlaya的其他基金

p-Adic Computation of L-Functions at Scale
大规模 L 函数的 p-Adic 计算
  • 批准号:
    2053473
    2053473
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Nonarchimedean Analysis, Geometry, and Computation
非阿基米德分析、几何和计算
  • 批准号:
    1802161
    1802161
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Applications and extensions of p-adic Hodge theory
p进Hodge理论的应用和扩展
  • 批准号:
    1501214
    1501214
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Standard Grant
    Standard Grant
ANTS-X: Algorithmic Number Theory Symposium 2012
ANTS-X:2012年算法数论研讨会
  • 批准号:
    1156412
    1156412
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Standard Grant
    Standard Grant
Between ordinary and p-adic Hodge theory
普通 Hodge 理论与 p-adic Hodge 理论之间
  • 批准号:
    1101343
    1101343
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CAREER: Cohomological Methods in Algebraic Geometry and Number Theory
职业:代数几何和数论中的上同调方法
  • 批准号:
    0545904
    0545904
  • 财政年份:
    2006
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Standard Grant
    Standard Grant
p-adic Cohomology and Applications
p-进上同调及其应用
  • 批准号:
    0400727
    0400727
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Birational geometry and spaces of rational curves
双有理几何和有理曲线空间
  • 批准号:
    0353692
    0353692
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Overconvergent Crystals and Modular Forms
过会聚晶体和模块化形式
  • 批准号:
    0071597
    0071597
  • 财政年份:
    2000
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Fellowship Award
    Fellowship Award

相似国自然基金

全球农业食品系统的生态毒理及人体健康影响研究
  • 批准号:
    52370193
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
逆全球化下跨国企业动态能力形成的微观机理研究:高管注意力配置视角
  • 批准号:
    72302220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
全球中小型湖泊水量对气候变化的响应机理及脆弱性研究
  • 批准号:
    42301449
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高分辨率地球系统模式研究气候变化下生物源排放对全球臭氧的影响
  • 批准号:
    42375189
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于遥感叶绿素荧光的全球陆地蒸散发模拟研究
  • 批准号:
    42371035
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Diophantine equations and local-global principles: into the wild
丢番图方程和局部全局原理:深入实践
  • 批准号:
    MR/T041609/2
    MR/T041609/2
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Fellowship
    Fellowship
Local-to-global principles for random Diophantine equations
随机丢番图方程的局部到全局原理
  • 批准号:
    EP/V048236/1
    EP/V048236/1
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Research Grant
    Research Grant
Local-global principles: arithmetic statistics and obstructions
局部全局原则:算术统计和障碍
  • 批准号:
    EP/S004696/2
    EP/S004696/2
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Research Grant
    Research Grant
Diophantine equations and local-global principles: into the wild
丢番图方程和局部全局原理:深入实践
  • 批准号:
    MR/T041609/1
    MR/T041609/1
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Fellowship
    Fellowship
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
  • 批准号:
    2001109
    2001109
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
    $ 15万
  • 项目类别:
    Standard Grant
    Standard Grant