CAREER: Complexity, Reality, and Rationality in Large Nonlinear Equation Solving
职业:大型非线性方程求解的复杂性、现实性和合理性
基本信息
- 批准号:0349309
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2009-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this Career project, the investigator studies problemsthat involve an interplay between algebraic geometry, numbertheory, and complexity theory. Specific projects include: (1) A new generation of fast randomized algorithms for real root counting, allowing analytic as well as algebraic equations, (2) Further explorations into algorithmic fewnomial theory over the real and p-adic numbers, (3) A deeper analysis of numerical conditioning of random sparse polynomial systems, (4) Sharpened quantitative results for rational solutions of straight-line programs, (5) Further exploration of number-theoretic approaches to the P vs. NP question. Solving equations is ubiquitous in applications, cuttingacross many areas of engineering and science: A brief listincludes drug design, faster and more reliable methods for radarimaging and geometric modelling, and more reliable and efficientapproaches to robotics and autonomous vehicles. The investigatordevelops methods for problems related to the solution ofpolynomial equations, with an eye toward these applications. Healso actively recruits students from schools in poorer areas ofTexas (with large African-American and Hispanic populations) tohelp disadvantaged students and channel more bright young peopleinto the computational sciences. He also continues work onrelated software, so that the broader public can benefit from thediscoveries of this project.
在这个职业项目中,研究人员研究问题的问题涉及代数几何,数字理论和复杂性理论之间的相互作用。 Specific projects include: (1) A new generation of fast randomized algorithms for real root counting, allowing analytic as well as algebraic equations, (2) Further explorations into algorithmic fewnomial theory over the real and p-adic numbers, (3) A deeper analysis of numerical conditioning of random sparse polynomial systems, (4) Sharpened quantitative results for rational solutions of straight-line programs, (5) Further exploration PS. NP问题的数字理论方法。 求解方程在应用中无处不在,切割工程和科学的许多领域:简短的列表包括药物设计,更快,更可靠的方法,用于雷达和几何建模,以及对机器人和自动驾驶汽车的更可靠,更有效的方法。 研究与多种方程式有关的问题的研究方法,以关注这些应用。 Healso积极招募来自较贫穷地区的学校的学生(有大量的非裔美国人和西班牙裔人口)TOHELP处于弱势学生,并引导年轻的年轻人在计算科学中更加聪明。 他还继续进行工作的软件,以便更广泛的公众可以从该项目的范围内受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J Maurice Rojas其他文献
J Maurice Rojas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J Maurice Rojas', 18)}}的其他基金
AF: Medium: Collaborative Research: Arithmetic Geometry Methods in Complexity and Communication
AF:媒介:协作研究:复杂性和通信中的算术几何方法
- 批准号:
1900881 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Sparse Polynomials, Complexity, and Algorithms
AF:媒介:协作研究:稀疏多项式、复杂性和算法
- 批准号:
1409020 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Texas Algebraic Geometry Seminar (TAGS) 2009; College Station, TX; Spring 2009
德克萨斯代数几何研讨会(TAGS)2009;
- 批准号:
0915235 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MCS: Randomization in Algorithmic Fewnomial Theory Over Complete Fields
MCS:完整域上算法少项理论的随机化
- 批准号:
0915245 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Robust Output Sensitive Algorithms for Subanalytic Geometry
亚解析几何的鲁棒输出敏感算法
- 批准号:
0211458 - 财政年份:2002
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9508964 - 财政年份:1995
- 资助金额:
$ 40万 - 项目类别:
Fellowship Award
相似国自然基金
面向现实复杂场景的知识表示学习技术研究
- 批准号:62206266
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向复杂现实场景的高可靠性端到端自动驾驶的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向现实复杂场景的知识表示学习技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向复杂现实场景的高可靠性端到端自动驾驶的研究
- 批准号:62273135
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
面向现实场景多元复杂性的无监督非侵入式负荷监测方法
- 批准号:52107120
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/S034420/2 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
- 批准号:
2404023 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
- 批准号:
DE240100502 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Early Career Researcher Award
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/Y00390X/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship