Simulating Large-Scale Conformational Rearrangements and Reaction Kinetics Profiles in DNA Polymerase Beta to Interpret DNA Synthesis Fidelity Mechanisms

模拟 DNA 聚合酶 Beta 中的大规模构象重排和反应动力学曲线,以解释 DNA 合成保真度机制

基本信息

  • 批准号:
    0316771
  • 负责人:
  • 金额:
    $ 83.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Studying large-scale, long-time biological processes such as enzyme catalysis, protein folding, and macromolecular assembly is a challenging task in computational biophysics. Since these processes occur over microseconds to seconds, much beyond the scope of traditional dynamics simulations, new techniques are needed to provide insights into detailed, local motions to supplement experiments. In this project, funded jointly by the Molecular Biophysics Program in the Division of Molecular and Cellular Biosciences and the Computational Math Program in the Division of Mathematical Sciences, the PI will develop, compare, and apply two rigorous and complementary path-generation methods, Elber's stochastic path approach (SPA) and Chandler's transition path sampling (TPS), to study the conformational transitions between closed and open states for human DNA polymerase beta (pol beta) complexed with DNA template/primer. This millisecond process is thought to be key in maintaining DNA synthesis fidelity. With these new tools, the PI will pursue several fundamental biological questions related to DNA synthesis fidelity, including the identification of slow conformational steps that steer the enzyme toward the chemistry-competent state and determination of rate-limiting steps in the enzyme's pathway. Atomic-level mechanistic insights, as well as associated free-energy barriers, will be delineated and related to enzyme function. The methodology developed is widely applicable to many other fundamental processes in molecular biophysics, and the biological findings will provide atomic-level interpretations to puzzling experimental variations in catalytic rates and error frequencies. Thus, the biological findings will help interpret fundamental fidelity mechanisms employed by DNA polymerases to replicate and repair DNA faithfully from one generation to the next.DNA polymerases maintain genomic integrity in the cell by replicating DNA and repairing damages in the genome from generation to generation. The goal of this project is to dissect the conformational aspects of the selectivity and fidelity of DNA repair process. Fidelity refers to the ability of DNA polymerases to discriminate among the various nucleotide building blocks as each base unit is synthesized and choose the correct base (parent strand's partner) for insertion and extension. The PI will employ modeling and simulation by novel path-generation schemes that can capture large-scale long-time processes to study these polymerase mechanisms to explain fidelity. Such information has important ramifications to our understanding the fundamental DNA synthesis and repair fidelity processes. This project represents a collaboration with theoreticians and experimentalists with expertise in nucleic-acid structure, polymerase mechanisms, and simulation methodology, and relies on solid groundwork in both methodology for biomolecular modeling. The tools developed are also widely applicable to many other important problems in biology. Involving undergraduate and graduate students and postdoctoral fellows, the project offers important multidisciplinary educational and training opportunities to young scientists, including women and minorities, in molecular modeling and computational biology, fields of growing importance to science and society.
研究酶催化、蛋白质折叠和大分子组装等大规模、长时间的生物过程是计算生物物理学中的一项具有挑战性的任务。 由于这些过程发生在微秒到秒的时间内,远远超出了传统动力学模拟的范围,因此需要新技术来提供对详细的局部运动的洞察,以补充实验。 在该项目中,由分子和细胞生物科学部的分子生物物理学计划和数学科学部的计算数学计划联合资助,PI 将开发、比较和应用两种严格且互补的路径生成方法,Elber 的随机路径方法 (SPA) 和钱德勒转变路径采样 (TPS),研究人类 DNA 聚合酶 β (pol beta) 复合物的闭合状态和开放状态之间的构象转变与 DNA 模板/引物。 这一毫秒过程被认为是维持 DNA 合成保真度的关键。 借助这些新工具,PI 将解决与 DNA 合成保真度相关的几个基本生物学问题,包括识别引导酶进入化学活性状态的缓慢构象步骤,以及确定酶途径中的限速步骤。原子水平的机制见解以及相关的自由能障碍将被描述并与酶功能相关。所开发的方法广泛适用于分子生物物理学中的许多其他基本过程,并且生物学发现将为催化速率和误差频率中令人费解的实验变化提供原子水平的解释。因此,生物学发现将有助于解释 DNA 聚合酶用于忠实地复制和修复 DNA 的基本保真机制。DNA 聚合酶通过一代又一代地复制 DNA 和修复基因组中的损伤来维持细胞中的基因组完整性。 该项目的目标是剖析 DNA 修复过程的选择性和保真度的构象方面。 保真度是指 DNA 聚合酶在合成每个碱基单元时区分各种核苷酸构件并选择正确碱基(母链的伴侣)进行插入和延伸的能力。 PI 将通过新颖的路径生成方案进行建模和模拟,这些方案可以捕获大规模的长时间过程,以研究这些聚合酶机制以解释保真度。这些信息对于我们理解基本的 DNA 合成和修复保真过程具有重要影响。该项目代表了与在核酸结构、聚合酶机制和模拟方法方面具有专业知识的理论家和实验家的合作,并依赖于生物分子建模这两种方法的坚实基础。开发的工具也广泛适用于生物学中的许多其他重要问题。该项目涉及本科生、研究生和博士后研究员,为包括女性和少数族裔在内的年轻科学家提供重要的多学科教育和培训机会,涉及分子建模和计算生物学这些对科学和社会日益重要的领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tamar Schlick其他文献

Molecular Modeling and Simulation: An Interdisciplinary Guide
分子建模与模拟:跨学科指南
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tamar Schlick
  • 通讯作者:
    Tamar Schlick
Regulation of chromatin architecture by transcription factor binding
通过转录因子结合调节染色质结构
  • DOI:
    10.7554/elife.91320
  • 发表时间:
    2024-01-19
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Stephanie Portillo;Suckwoo Chung;Jill Hoffman;Tamar Schlick
  • 通讯作者:
    Tamar Schlick
MultiBody System SIMulation: Numerical Methods, Algorithms, and Software
多体系统仿真:数值方法、算法和软件
  • DOI:
  • 发表时间:
    1999-09-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Schwerin;Tamar Schlick;David E. Keyes;Risto M. Nieminen;Michael Griebel;Dirk Roose
  • 通讯作者:
    Dirk Roose
Modeling and Simulating RNA: Combining Structural, Dynamic, and Evolutionary Perspectives for Coronavirus Applications
RNA 建模和模拟:结合冠状病毒应用的结构、动态和进化视角
Biophysical Journal, Volume 99
生物物理学杂志,第 99 卷
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tamar Schlick
  • 通讯作者:
    Tamar Schlick

Tamar Schlick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tamar Schlick', 18)}}的其他基金

MFB: RNA modifications of frameshifting stimulators: cellular platforms to engineer gene expression by computational mutation predictions and functional experiments
MFB:移码刺激器的RNA修饰:通过计算突变预测和功能实验来设计基因表达的细胞平台
  • 批准号:
    2330628
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Unraveling Structural and Mechanistic Aspects of RNA Viral Frameshifting Elements by Graph Theory and Molecular Modeling
合作研究:通过图论和分子建模揭示RNA病毒移码元件的结构和机制
  • 批准号:
    2151777
  • 财政年份:
    2022
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Continuing Grant
RAPID: Exploring Covid-19 RNA Viral Targets By Graph-Theory-Based Modeling
RAPID:通过基于图论的建模探索 Covid-19 RNA 病毒靶点
  • 批准号:
    2030377
  • 财政年份:
    2020
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Workshop Proposal: IMAG Futures Meeting
研讨会提案:IMAG 未来会议
  • 批准号:
    1008193
  • 财政年份:
    2009
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Computational Methods for Tertiary RNA Folding and Novel RNA Design
RNA 三级折叠和新型 RNA 设计的计算方法
  • 批准号:
    0727001
  • 财政年份:
    2007
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Toward RNA Genomics: A Pilot Study in the Analysis, Design, and Prediction of RNA Structures
RNA 基因组学:RNA 结构分析、设计和预测的初步研究
  • 批准号:
    0201160
  • 财政年份:
    2002
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Continuing Grant
International Workshop: Methods for Macromolecular Modeling
国际研讨会:大分子建模方法
  • 批准号:
    0071877
  • 财政年份:
    2000
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Postdoc: Brownian Dynamics of DNA Slithering
博士后:DNA滑动的布朗动力学
  • 批准号:
    9704681
  • 财政年份:
    1997
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
New Algorithms for Large Time-Step Molecular Dynamics Simulations and their Application to Protein and Nucleic Acids
大时间步长分子动力学模拟的新算法及其在蛋白质和核酸中的应用
  • 批准号:
    9310295
  • 财政年份:
    1993
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
PYI: Computation of Macromolecular Structure
PYI:高分子结构的计算
  • 批准号:
    9157582
  • 财政年份:
    1991
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向科学大装置超大规模数据流的定制计算研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    50 万元
  • 项目类别:
    联合基金项目
面向大规模盲源分离的高维度大尺寸张量分解方法研究
  • 批准号:
    62071082
  • 批准年份:
    2020
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
利用Cas9大规模基因敲除技术在HIV-1潜伏细胞上筛选及鉴定与HIV潜伏相关的关键宿主基因
  • 批准号:
    31771484
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Fellowship
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Standard Grant
Uncovering Sex-Specific Biological Mechanisms of Depression: Insights from Large-Scale Data Analysis
揭示抑郁症的性别特异性生物学机制:大规模数据分析的见解
  • 批准号:
    MR/Y011112/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.88万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了