MFB: RNA modifications of frameshifting stimulators: cellular platforms to engineer gene expression by computational mutation predictions and functional experiments
MFB:移码刺激器的RNA修饰:通过计算突变预测和功能实验来设计基因表达的细胞平台
基本信息
- 批准号:2330628
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In this Molecular Foundations for Biotechnology (MFB) project, Dr. Tamar Schlick from New York University and Dr. Alain Laederach from the University of North Carolina will develop advanced computational tools to predict and control how viral protein synthesis is affected when the cell’s machinery (the ribosome) shifts and thus changes how the three-letter code in messenger RNA (mRNA) is read. This frameshifting in translating the mRNA triplet code has been found to be preprogrammed in viruses and human cells to modify the expression of gene products and to regulate biochemical processes. This study aims to computationally predict and experimentally test how introducing mutations to mRNA affects its three-dimensional structure and, consequently, programmed frameshifting in prototypical viral genomes. Revealing the specific structural and sequence requirements for frameshifting in prototype viruses will facilitate the design of novel efficient frameshifting elements, with potential applications to viral packaging of genes. This project will provide interdisciplinary training to students in mathematics, computer science, biology, physics, chemistry, and engineering, with particular emphasis on enhancing minority participation in STEM activities. Public outreach efforts will be included to reach general audiences and highlight the intersection of mathematics, biology, computing, and biotechnologies that have implications in human health. Programmed ribosomal frameshifting (PRF) is a widespread mechanism for modifying the gene expressed by altering the mRNA triplet-nucleotide transcript to generate an alternate gene product. Indispensable to many viruses including HIV and SARS-associated coronaviruses for translating overlapping mRNA reading frames, PRF is also a mechanism in endogenous human, eukaryotic and prokaryotic genes. Because PRF has been shown to dramatically influence viral viability or the biochemical regulation of human processes, the modulation of frameshifting defines a platform for engineering gene expression. However, the complex aspects of frameshifting and the structural plasticity of the RNA frameshifting element (FSE) must be understood before engineering and therapeutic strategies can succeed. In this synergistic biological, chemical, mathematical, and computational research program, graph-theory-based tools will be developed to predict FSE mutations for prototype viral systems aimed at substantially lowering frameshifting efficiency as a novel biotechnological strategy against viral infections and related human diseases associated with PRF. The effect of these mutations will be assessed by Luciferase assay measurements, and the resulting FSE structural landscapes analyzed by techniques suitable for RNAs with multiple conformations. Besides an improved understanding of the mechanisms of frameshifting and computational tools for predicting FSE-landscape-altering mutations, this project will produce new biotechnological, RNA modifying tools as potential therapeutic agents against RNA viruses or applicable to human and other genes that employ frameshifting. Applications to viral packaging/drug delivery also arise, as frameshifting is a compact mechanism to store gene coding information and can be exploited to overcome genomic size limitations.This project is jointly funded by the Division of Chemistry (CHE), the Division of Mathematical Sciences (DMS), and the Division of Physics (PHY) in the Directorate for Mathematical and Physical Sciences (MPS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个生物技术分子基础 (MFB) 项目中,纽约大学的 Tamar Schlick 博士和北卡罗来纳大学的 Alain Laederach 博士将开发先进的计算工具,以预测和控制当细胞机器(人们发现,翻译 mRNA 三联体代码时的这种移码在病毒和人类细胞中已被预先编程,以修改信使 RNA (mRNA) 中的三字母代码。本研究旨在通过计算预测和实验测试向 mRNA 引入突变如何影响其三维结构,从而揭示原型病毒基因组中的程序移码。原型病毒中的研究将促进新型高效移码元件的设计,并有可能应用于基因的病毒包装。该项目将为学生提供数学、计算机科学、生物学、物理、化学和工程学方面的跨学科培训,特别强调增强能力。少数人参与STEM 活动中将包括公众宣传活动,以吸引广大受众,并强调对人类健康具有影响的数学、生物学、计算和生物技术的交叉点。改变 mRNA 三联体核苷酸转录物以产生替代基因产物,对于许多病毒(包括 HIV 和 SARS 相关冠状病毒)翻译重叠 mRNA 阅读框来说是必不可少的,PRF 也是内源性人类中的一种机制。由于 PRF 已被证明可以显着影响病毒活力或人类过程的生化调节,因此移码的调节定义了基因表达工程的平台,然而,移码的复杂性和 RNA 移码的结构可塑性。在工程和治疗策略取得成功之前,必须先了解 FSE 元素。在这个协同生物、化学、数学和计算研究项目中,将开发基于图论的工具来预测原型病毒系统的 FSE 突变。旨在大幅降低移码效率,作为对抗病毒感染和与 PRF 相关的人类疾病的新型生物技术策略。这些突变的影响将通过荧光素酶测定测量进行评估,并通过适合具有多种构象的 RNA 的技术来分析由此产生的 FSE 结构景观。除了加深对移码机制和预测 FSE 景观改变突变的计算工具的理解外,该项目还将生产新的生物技术、RNA 修饰工具,作为对抗 RNA 病毒或适用于人类和人类的潜在治疗剂。使用移码的其他基因也出现在病毒包装/药物递送中,因为移码是一种存储基因编码信息的紧凑机制,并且可以用来克服基因组大小的限制。该项目由化学部(CHE)共同资助。 、数学科学部 (DMS) 和数学与物理科学理事会 (MPS) 下的物理部 (PHY)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tamar Schlick其他文献
Molecular Modeling and Simulation: An Interdisciplinary Guide
分子建模与模拟:跨学科指南
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Tamar Schlick - 通讯作者:
Tamar Schlick
Modeling and Simulating RNA: Combining Structural, Dynamic, and Evolutionary Perspectives for Coronavirus Applications
RNA 建模和模拟:结合冠状病毒应用的结构、动态和进化视角
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tamar Schlick;Shuting Yan - 通讯作者:
Shuting Yan
Biophysical Journal, Volume 99
生物物理学杂志,第 99 卷
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Tamar Schlick - 通讯作者:
Tamar Schlick
Regulation of chromatin architecture by transcription factor binding
通过转录因子结合调节染色质结构
- DOI:
10.7554/elife.91320 - 发表时间:
2024-01-19 - 期刊:
- 影响因子:7.7
- 作者:
Stephanie Portillo;Suckwoo Chung;Jill Hoffman;Tamar Schlick - 通讯作者:
Tamar Schlick
MultiBody System SIMulation: Numerical Methods, Algorithms, and Software
多体系统仿真:数值方法、算法和软件
- DOI:
- 发表时间:
1999-09-06 - 期刊:
- 影响因子:0
- 作者:
R. Schwerin;Tamar Schlick;David E. Keyes;Risto M. Nieminen;Michael Griebel;Dirk Roose - 通讯作者:
Dirk Roose
Tamar Schlick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tamar Schlick', 18)}}的其他基金
Collaborative Research: Unraveling Structural and Mechanistic Aspects of RNA Viral Frameshifting Elements by Graph Theory and Molecular Modeling
合作研究:通过图论和分子建模揭示RNA病毒移码元件的结构和机制
- 批准号:
2151777 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
RAPID: Exploring Covid-19 RNA Viral Targets By Graph-Theory-Based Modeling
RAPID:通过基于图论的建模探索 Covid-19 RNA 病毒靶点
- 批准号:
2030377 - 财政年份:2020
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Workshop Proposal: IMAG Futures Meeting
研讨会提案:IMAG 未来会议
- 批准号:
1008193 - 财政年份:2009
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Computational Methods for Tertiary RNA Folding and Novel RNA Design
RNA 三级折叠和新型 RNA 设计的计算方法
- 批准号:
0727001 - 财政年份:2007
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Simulating Large-Scale Conformational Rearrangements and Reaction Kinetics Profiles in DNA Polymerase Beta to Interpret DNA Synthesis Fidelity Mechanisms
模拟 DNA 聚合酶 Beta 中的大规模构象重排和反应动力学曲线,以解释 DNA 合成保真度机制
- 批准号:
0316771 - 财政年份:2003
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
Toward RNA Genomics: A Pilot Study in the Analysis, Design, and Prediction of RNA Structures
RNA 基因组学:RNA 结构分析、设计和预测的初步研究
- 批准号:
0201160 - 财政年份:2002
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
International Workshop: Methods for Macromolecular Modeling
国际研讨会:大分子建模方法
- 批准号:
0071877 - 财政年份:2000
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Postdoc: Brownian Dynamics of DNA Slithering
博士后:DNA滑动的布朗动力学
- 批准号:
9704681 - 财政年份:1997
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
New Algorithms for Large Time-Step Molecular Dynamics Simulations and their Application to Protein and Nucleic Acids
大时间步长分子动力学模拟的新算法及其在蛋白质和核酸中的应用
- 批准号:
9310295 - 财政年份:1993
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
PYI: Computation of Macromolecular Structure
PYI:高分子结构的计算
- 批准号:
9157582 - 财政年份:1991
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
相似国自然基金
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
- 批准号:82301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
洋山港潜在古菌RNA病毒YSHRV1探索
- 批准号:32370151
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
PI3K调节亚基p85β相分离调控RNA聚合酶POLR1A促进肝癌进展的机制研究
- 批准号:82372615
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于RNA m6A甲基化调控细胞程序性坏死探讨缺硒鸡动脉损伤机制的研究
- 批准号:32372967
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
共载肿瘤RNA/金银花多糖的外泌体仿生递药系统构建及其归巢于犬乳腺肿瘤微环境的抗肿瘤免疫机理
- 批准号:32373056
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
BRC-BIO: Deciphering the roles of RNA modifications in regulating responses to abiotic stresses in cereal crops
BRC-BIO:解读 RNA 修饰在调节谷类作物非生物胁迫反应中的作用
- 批准号:
2312857 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
INVESTIGATE SEQUENCE SPECIFICITY IN THE BIOSYNTHESIS AND RECOGNITION OF RNA CHEMICAL MODIFICATIONS
研究 RNA 化学修饰生物合成和识别中的序列特异性
- 批准号:
10714628 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Uncovering the Role of RNA Modifications in the Paraspeckle
揭示 RNA 修饰在副斑斑中的作用
- 批准号:
10679290 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Engineering locus-specific binders to DNA modifications
工程化位点特异性结合剂以进行 DNA 修饰
- 批准号:
10593668 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Role of m6A RNA modifications in AHR-mediated developmental toxicity
m6A RNA 修饰在 AHR 介导的发育毒性中的作用
- 批准号:
10647294 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别: