Harmonic analysis and applications to geometric PDE's
调和分析及其在几何偏微分方程中的应用
基本信息
- 批准号:0300511
- 负责人:
- 金额:$ 9.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-15 至 2007-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Atanas G. StefanovDMS-0300511ABSTRACT:The proposal deals with several problems arising in geometry and in the theory of electromagnetism. The main goal is to study analytically the behavior of the solutions of the partial differential equations, describing these processes. The PI will concentrate on the study of the following equations: the Wave map problem, the Schroedinger map problem and the Yang-Mills fields equations. Following the fundamental physical principle that every physical system is trying to minimize its energy, one form and studies the solutions to these nonlinear partial differential equations, which arise as the minimizers of the corresponding energy functionals. The questions for existence, uniqueness and stability for these equations have been studied extensively in various settings. However to conform to a more natural physical situation, one needs to consider low regularity data. Stefanov will concentrate on showing regularity for solutions with critical degree of regularity. That is, one requires the least possible amount of smoothness in order to show that the solution exists globally in time. In the physically interesting case of small energy data (modeling systems that are very close to their equilibrium), the proposal will address the question of stability, i.e. whether the system will remain close to its initial state or will eventually develop some singularities. Stefanov proposes to study these problems, by using a variety of techniques including frequency analysis and gauge theoretic methods. A concurrent aim of the project is to make these methods more readily applicable to other problems. The wave equation models the propagation of different kind of waves in materials. Nonlinear models of conservative type arise in the study of vibrating systems and semiconductors.The nonlinear Schroedinger equation describes the propagation of a laser beam in a medium whose index of refraction is sensitive to the wave amplitude. Better theoretical understanding of the time evolution of these models will allow one to better predict the physical behaviour of such systems. For example, if a physical system of the kind described above, is stable (rigid) with respect to small perturbations, one could afford to have certain amount of noise/impurities in thesystem. The analytical study of the equations governing such processes will lead to a better understanding of the corresponding physical phenomenon.
PI:Atanas G. Stefanovdms-0300511abtract:该提案涉及几何学和电磁理论中产生的几个问题。主要目标是分析研究部分微分方程的解决方案的行为,描述这些过程。 PI将集中于以下方程的研究:波图问题,Schroedinger地图问题和Yang-Mills字段方程。遵循每个物理系统试图最大程度地减少其能量的基本原则,一种形式并研究了这些非线性部分偏微分方程的解决方案,这些方程是作为相应能量功能的最小化器所产生的。在各种情况下,已经对这些方程式的存在,独特性和稳定性进行了广泛研究。但是,要符合更自然的身体状况,需要考虑较低的规律性数据。 Stefanov将集中精力显示具有临界程度的固定性的规律性。也就是说,一个人需要最少的平滑度,以表明该解决方案在全球范围内存在。在小型能量数据的物理上有趣的情况下(非常接近其平衡的建模系统),该提案将解决稳定问题,即该系统是否将保持接近其初始状态或最终将发展一些奇异性。 Stefanov建议通过使用各种技术(包括频率分析和计量理论方法)来研究这些问题。该项目的同时目的是使这些方法更容易适用于其他问题。 波方程模拟了材料中不同类型波的传播。保守类型的非线性模型在振动系统和半导体的研究中出现。非线性Schroedinger方程描述了激光束在介质中的激光束传播,其折射率对波振幅敏感。对这些模型的时间演变的更好理论理解将使人们更好地预测此类系统的身体行为。例如,如果上述类型的物理系统相对于小扰动是稳定的(刚性),则可以在该系统中具有一定程度的噪声/杂质。对此类过程的方程式的分析研究将使人们更好地理解相应的物理现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atanas Stefanov其他文献
Atanas Stefanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Atanas Stefanov', 18)}}的其他基金
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
- 批准号:
2204788 - 财政年份:2021
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
- 批准号:
1908626 - 财政年份:2019
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
Stability of Solitary Waves in Dynamical Systems
动力系统中孤立波的稳定性
- 批准号:
1614734 - 财政年份:2016
- 资助金额:
$ 9.8万 - 项目类别:
Standard Grant
Workshop: Stability of solitary waves, May 25-30, 2014
研讨会:孤立波的稳定性,2014 年 5 月 25-30 日
- 批准号:
1419217 - 财政年份:2014
- 资助金额:
$ 9.8万 - 项目类别:
Standard Grant
Stability of waves in discrete and continuous dynamical systems
离散和连续动力系统中波的稳定性
- 批准号:
1313107 - 财政年份:2013
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
Stability in Discrete and Continuous Dynamical Systems
离散和连续动力系统的稳定性
- 批准号:
0908802 - 财政年份:2009
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
Harmonic Analysis and Nonlinear Dispersive Equations
谐波分析和非线性色散方程
- 批准号:
0701802 - 财政年份:2007
- 资助金额:
$ 9.8万 - 项目类别:
Standard Grant
相似国自然基金
基于多组学分析的胸主动脉瘤/夹层发生发展的关键机制和干预策略研究(联合申请A)
- 批准号:82241203
- 批准年份:2022
- 资助金额:200.00 万元
- 项目类别:专项项目
战略研究类:地理科学2021版申请代码调整对资助布局影响及资助政策分析
- 批准号:42242001
- 批准年份:2022
- 资助金额:34.00 万元
- 项目类别:专项项目
战略研究类:大气学科国家自然科学基金资助布局及其动态变化分析—以2020版申请代码为视角
- 批准号:
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:专项基金项目
战略研究类:大气学科国家自然科学基金资助布局及其动态变化分析—以2020版申请代码为视角
- 批准号:42142009
- 批准年份:2021
- 资助金额:33.00 万元
- 项目类别:专项项目
基于计算机文本分析的IPO申请材料的披露质量研究
- 批准号:71602131
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Recent advances in applications of harmonic analysis to convex geometry
会议:调和分析在凸几何中的应用的最新进展
- 批准号:
2246779 - 财政年份:2023
- 资助金额:
$ 9.8万 - 项目类别:
Standard Grant
Multilinear Harmonic Analysis and Applications
多线性谐波分析及应用
- 批准号:
2154356 - 财政年份:2022
- 资助金额:
$ 9.8万 - 项目类别:
Standard Grant
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
- 批准号:
RGPIN-2017-05712 - 财政年份:2022
- 资助金额:
$ 9.8万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
EAGER: CDS&E: Applied geometry and harmonic analysis in deep learning regularization: theory and applications
渴望:CDS
- 批准号:
2140982 - 财政年份:2021
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant