Curvature Measures and Integral Geometry

曲率测量和积分几何

基本信息

  • 批准号:
    160223306
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2010
  • 资助国家:
    德国
  • 起止时间:
    2009-12-31 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

In the current project, the investigation of curvature measures in euclidean spaces has been advanced in two directions. In a first subproject, curvature related quantities of very general sets have been studied via the approximation with parallel sets and the asymptotic behaviour of such approximations has been explored. Here, very general connections between the asymptotic behaviour of the volume and the surface area of the parallel sets have been found, and this has led to a good understanding of the global aspects of this approximation. Moreover, the existence of fractal curvature measures of self-similar sets has been established in a general framework. In the second subproject, extensions of curvature measures of convex bodies to measures on flag manifolds have been treated. The properties of such flag measures have been studied and it has been discussed how flag measures can be used for classical integral formulas in convex geometry and for the investigation of valuations. Many of the problems that have been addressed are not completely resolved so far. This should be done in the second phase of the project. In particular, we plan to localize, in a measure theoretic setting, the results obtained in the first subproject concerning the connection between volume and surface area of general sets. In addition, we shall study especially those self-similar sets whose curvature measures do not scale with the dimension, with the aim of understanding the geometric meaning of the scaling exponents. In the context of flag measures, further integral representations of mixed volumes and of special functionals (such as the support function) should be developed. Another goal is to find a description of homogeneous valuations by means of flag measures. Finally, applications to stochastic geometry, for instance to Boolean models, still remain to be considered. These applications require the investigation of injectivity properties of operators which are associated with flag measures.
在当前的项目中,欧几里得空间中曲率测度的研究已在两个方向上推进。在第一个子项目中,通过平行集合的近似研究了非常一般集合的曲率相关量,并探索了这种近似的渐近行为。在这里,我们发现了体积的渐近行为和平行集的表面积之间非常普遍的联系,这使得我们能够更好地理解这种近似的全局方面。 此外,自相似集分形曲率测度的存在性已在一般框架中得到确立。在第二个子项目中,处理了凸体曲率测量到旗形流形测量的扩展。已经研究了此类标志测度的属性,并讨论了如何将标志测度用于凸几何中的经典积分公式以及评估研究。迄今为止,许多已经解决的问题还没有完全解决。这应该在项目的第二阶段完成。特别是,我们计划在测量理论环境中本地化第一个子项目中获得的关于一般集合的体积和表面积之间的联系的结果。此外,我们将特别研究那些曲率度量不随维数缩放的自相似集,目的是理解缩放指数的几何意义。在标志测量的背景下,应该开发混合体积和特殊函数(例如支持函数)的进一步积分表示。另一个目标是通过标志度量找到同质估值的描述。最后,随机几何的应用,例如布尔模型,仍有待考虑。这些应用需要研究与标志测量相关的算子的注入性属性。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Daniel Hug其他文献

Professor Dr. Daniel Hug的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Daniel Hug', 18)}}的其他基金

Boolean models
布尔模型
  • 批准号:
    196779631
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Units
Tensor valuations
张量估值
  • 批准号:
    196778596
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Units
Integral geometry in spaces of constant curvature and applications to stochastic geometry
常曲率空间中的积分几何及其在随机几何中的应用
  • 批准号:
    443914364
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

不同农地整治措施对土壤微生态环境的影响机理研究——以浙江省嘉善县为例
  • 批准号:
    42301230
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
沙地不同植被恢复措施下土壤有机碳固存及其微生物机制
  • 批准号:
    42301080
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
  • 批准号:
    42377321
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高面板堆石坝面板挤压破损发生机制及防治措施研究
  • 批准号:
    52369022
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
退化草地土壤微小型生物群落对长期水氮添加和灌丛剔除恢复措施的响应动态
  • 批准号:
    32301441
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Neurosteroid and Cholesterol Binding to Integral Membrane Proteins
神经类固醇和胆固醇与整合膜蛋白的结合
  • 批准号:
    10623887
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Data-driven modeling of the vibrational spectroscopy of ion channels
离子通道振动光谱的数据驱动建模
  • 批准号:
    10715048
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of positive TMEM97 modulators for treating neuropathic pain
开发用于治疗神经性疼痛的正 TMEM97 调节剂
  • 批准号:
    10642506
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Generalizable Nanosensors for Probing Highly Specific Interactions of Protein Kinases
用于探测蛋白激酶高度特异性相互作用的通用纳米传感器
  • 批准号:
    10719635
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Structural Insights into Leucine Transport for mTORC1 Activation
mTORC1 激活亮氨酸转运的结构见解
  • 批准号:
    10607075
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了