CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
基本信息
- 批准号:2340006
- 负责人:
- 金额:$ 66.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-15 至 2028-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning is becoming increasingly prevalent in various aspects of our lives, including several high-stakes applications, such as finance, education, and employment. These machine learning models have shown remarkable success at learning patterns present in the historical data. However, indiscriminate learning of all patterns can sometimes lead to unintended consequences, such as perpetuating disparities based on gender, race, and other protected attributes, that can adversely affect certain groups of people. This project seeks to advance the foundations of ethical and socially-responsible machine learning by empowering users to systematically identify, explain, and mitigate the sources of disparity. Rethinking the traditional paradigm of separately addressing fairness and explainability, this research project will jointly examine fairness and explainability through a unified information-theoretic lens. Furthermore, through extensive outreach and student engagements on the social impacts of machine learning, this project aims to instill interest in mathematically-principled approaches and STEM education among undergraduate and high-school students, particularly underrepresented minority students, to spearhead the next generation of socially-responsible technology.The research project will provide a novel information-theoretic view of responsible machine learning, by leveraging a body of work in information theory called Partial Information Decomposition (PID). PID is closely tethered to the principles of Blackwell sufficiency in statistical decision theory and provides a formal way of quantifying when a random variable is “more informative” than another with respect to a target variable. Combined with estimation and optimization techniques, this project will enable us to disentangle the joint information content that several random variables share about another target variable, e.g., protected attributes such as gender, race, age, nationality, etc. Four research thrusts will be investigated: (i) Providing an information-theoretic framework for explaining sources of disparity with respect to protected attributes (gender, race, etc.); (ii) Performing systematic feature selection and representation learning with disparity control; (iii) Investigating fundamental limits with a focus on distributed and federated settings; and (iv) Validating these findings on real-world datasets in finance and education. This research will lay the foundational guiding principles for engineers and policymakers so that AI can truly bring about social good.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习在我们生活的各个方面都变得越来越普遍,包括金融,教育和就业等几种高风险应用。这些机器学习模型在历史数据中存在的学习模式方面取得了巨大的成功。但是,对所有模式的学习不加区分的学习有时会导致意想不到的后果,例如基于性别,种族和其他受保护属性的差异,可能会对某些人群产生不利影响。该项目旨在通过授权用户系统地识别,解释和减轻差异来源来推动道德和社会负责的机器学习的基础。该研究项目重新考虑了分别解决公平性和解释性的传统范式,将通过统一的信息理论镜头共同研究公平性和解释性。此外,通过大量的外展和学生参与机器学习的社会影响,该项目旨在灌输对数学上专业的方法的兴趣,并在本科和高中生和高中生中的学生中进行数学专业的方法和STEM教育,尤其是代表性不足的少数群体,尤其是代表性的少数群体,尤其是率领下一代社会责任心的信息,以提供一定的信息,以提供一定的信息,以提供一定的信息,以提供一定的信息信息,以提供一定的信息,以提供一定的信息,以提供一定的信息。分解(PID)。 PID与静态决策理论中Blackwell的原理紧密联系在一起,并提供了一种正式的量化方式,当随机变量比另一个相对于目标变量“更有用”时。结合估计和优化技术,该项目将使我们能够解散几个随机变量在另一个目标变量上共享的联合信息内容,例如,例如性别,种族,种族,年龄,国籍等受保护的属性。将研究四个研究推力:(i)提供一个与尊重尊重的范围的信息(i)提供了一个信息。 (ii)通过差异控制执行系统的特征选择和表示学习; (iii)调查基本限制,重点是分布式和联合设置; (iv)在金融和教育中对实际数据集验证这些发现。这项研究将为工程师和政策制定者提供基本指导原则,以便AI能够真正带来社会利益。该奖项反映了NSF的法定使命,并使用基金会的知识分子优点和更广泛的影响审查标准,通过评估来诚实地支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanghamitra Dutta其他文献
Can Information Flows Suggest Targets for Interventions in Neural Circuits?
信息流可以建议神经回路干预的目标吗?
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Praveen Venkatesh;Sanghamitra Dutta;Neil Mehta;P. Grover - 通讯作者:
P. Grover
Can Querying for Bias Leak Protected Attributes? Achieving Privacy With Smooth Sensitivity
查询偏差是否会泄漏受保护的属性?
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Faisal Hamman;Jiahao Chen;Sanghamitra Dutta - 通讯作者:
Sanghamitra Dutta
Is There a Trade-Off Between Fairness and Accuracy? A Perspective Using Mismatched Hypothesis Testing
公平性和准确性之间是否需要权衡?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Sanghamitra Dutta;Dennis Wei;Hazar Yueksel;Pin;Sijia Liu;Kush R. Varshney - 通讯作者:
Kush R. Varshney
Model Reconstruction Using Counterfactual Explanations: Mitigating the Decision Boundary Shift
使用反事实解释重建模型:减轻决策边界转移
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Pasan Dissanayake;Sanghamitra Dutta - 通讯作者:
Sanghamitra Dutta
Antioxidant and Free Radical Scavenging Activity of Trigonella foenum-graecum L, Murraya koenigii , Coriandrum sativum and Centella asiatica
葫芦巴、九里香、芫荽和积雪草的抗氧化和自由基清除活性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sanghamitra Dutta;Debanita Roy;A. De;Camellia Dutta;S. Bhattacharya - 通讯作者:
S. Bhattacharya
Sanghamitra Dutta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanghamitra Dutta', 18)}}的其他基金
On-Line Laser-Spectroscopy on Nuclear Isomeric States
核异构态在线激光光谱分析
- 批准号:
9110748 - 财政年份:1991
- 资助金额:
$ 66.56万 - 项目类别:
Standard Grant
相似国自然基金
基于证据理论的非完备信息度量及融合方法研究
- 批准号:62301439
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂多重先验信息的试验设计理论与应用研究
- 批准号:12361053
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
钛合金SLM成形热致微失稳体多源信息驱动无损感知理论与方法研究
- 批准号:52305594
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新一代信息技术的复杂油气储层地震勘探理论和方法
- 批准号:42330801
- 批准年份:2023
- 资助金额:231 万元
- 项目类别:重点项目
抗信息交互不确定性的高实时无人机集群协同理论与方法研究
- 批准号:62371086
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
相似海外基金
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
$ 66.56万 - 项目类别:
Continuing Grant
CAREER: Optimism in Causal Reasoning via Information-theoretic Methods
职业:通过信息论方法进行因果推理的乐观主义
- 批准号:
2239375 - 财政年份:2023
- 资助金额:
$ 66.56万 - 项目类别:
Continuing Grant
CAREER: Information-Theoretic Approach to Turbulence: Causality, Modeling & Control
职业:湍流的信息理论方法:因果关系、建模
- 批准号:
2140775 - 财政年份:2021
- 资助金额:
$ 66.56万 - 项目类别:
Continuing Grant
CAREER: Information-Theoretic and Statistical Foundations of Generative Models
职业:生成模型的信息理论和统计基础
- 批准号:
1942230 - 财政年份:2020
- 资助金额:
$ 66.56万 - 项目类别:
Continuing Grant
CAREER: Information Theoretic Methods in Data Structures
职业:数据结构中的信息论方法
- 批准号:
1844887 - 财政年份:2019
- 资助金额:
$ 66.56万 - 项目类别:
Continuing Grant