SGER: New Approach to Revolutionize a Photovoltaic Detector Performance Using Electron Injection-Induced Effects in AlGaN

SGER:利用 AlGaN 中的电子注入感应效应彻底改变光伏探测器性能的新方法

基本信息

项目摘要

Wide band gap GaN-based semiconductors are attracting increasing attention due to their importance in modern electronics. The applications of GaN necessitate the controlled modification of its fundamental electronic properties, in addition to the availability of high quality material. The spectral response of the GaN-based photovoltaic detectors is generally limited by the large absorption coefficient at high energies and the small minority carrier diffusion length. Recent design changes, to overcome these limitations, include the use of p-i-n instead of p-n junction [1-4], substitution of GaN by AlxGa1-xN [1-3] or semitransparent recessed windows [2], and a back-illuminated detector configuration [3]. However, a tuning of fundamental (Al)GaN properties, to boost the performance of III-Nitride devices, was never directly considered. The innovation in this proposal is to significantly enhance a photovoltaic detector performance by tailoring the minority carrier diffusion length in (Al)GaN. The diffusion length is a crucial parameter for the detector quantum efficiency and photoresponse. The underlying concept is defined by the PI.s recent findings [5-8] that electron injection into p-(Al)GaN from the application of an external voltage in a solid state device--p-n junction or Schottky barrier-increases the critical minority carrier diffusion length and lifetime. Consistent changes were observed in other material properties, including luminescence and spectral photoresponse, and were attributed to charging of deep metastable Mg-acceptor-related centers [6]. The practical significance of this research is a long-term (days), revolutionary (up to an order of magnitude!) performance enhancement for (Al)GaN-based photovoltaic detectors, achieved through short time (at most 1500 sec) electron injection. This is because the increased diffusion length improves minority carrier collection and eliminates the "dead space", where carriers recombine before they are collected. The proposed project is of high risk, since it must be determined whether the novel electron injection-induced effects in p-(Al)GaN [5-8] are universal in nature and represent a fundamental property of the p-type material, or if instead they depend on the material's quality, growth, and processing conditions. If, indeed, the effects are universal, a high pay off will be manifested in a development of this novel and simple approach to revolutionize photovoltaic detector performance by manipulating the material.s transport properties, which will likely be used in combination with design and technology improvements. Success in this SGER application will lead to the implementation of this approach in commercial detectors, and will advance the frontiers of this technology for use in other bipolar devices for which the diffusion length is critical (transistors, thyristors) [6]. It is planned to submit a GOALI proposal (with Corning) based on success of this project. The broader impact of this research will be a dipper understanding of electron transport in GaN and related compounds, the integration of research with education, and partnership with industry.
宽带隙基于gan的半导体由于其在现代电子中的重要性而引起了越来越多的关注。 GAN的应用还需要对其基本电子性质进行控制的修改,除了可用的高质量材料。 基于GAN的光伏检测器的光谱响应通常受到高能量吸收系数和少数少数载体扩散长度的限制。为了克服这些局限性,最近的设计更改包括使用P-I-N代替P-N连接[1-4],用Alxga1-XN替换GAN [1-3]或半透明的嵌入式窗口[2],以及后刷的检测器配置[3]。但是,从未直接考虑对基本(Al)GAN性质的调整,以提高III二硝酸盐设备的性能。该提案的创新是通过定制(Al)GAN中的少数载体扩散长度来显着提高光伏检测器性能。扩散长度是检测器量子效率和光响应的关键参数。基本概念是由PI.S最近的发现[5-8]定义的,即通过在固态设备中使用外部电压为P-(al)GAN,p-(al)gan,p-n nextion-p-n连接或schottky屏障增加了关键少数载体扩散长度和寿命。在其他材料特性(包括发光和光谱光响应)中观察到一致的变化,并归因于深层亚稳态相关中心的充电[6]。 这项研究的实际意义是长期(天),革命性的(达到数量级!)(基于GAN)基于GAN的光伏检测器的性能提高,可通过短时(最多1500秒)电子注入来实现。这是因为增加的扩散长度改善了少数族载体的收集并消除了“死空间”,在收集载体之前,载体会重新组合。 拟议的项目具有很高的风险,因为必须确定新型电子注射诱导的p-(al)gan [5-8]的效果是普遍的,并且代表了p型材料的基本特性,还是相反,如果它们取决于材料的质量,增长和处理条件。 如果确实是效果是普遍的,那么通过操纵材料来彻底改变光伏探测器性能的小说和简单方法的发展将表现出高的回报。改进。在此SGER应用程序中的成功将导致在商业探测器中实施这种方法,并将推进该技术的前沿,以在其他双极设备中使用,而扩散长度至关重要(晶体管,晶状体)[6]。 计划根据该项目的成功提交目标提案(带有康宁)。这项研究的更广泛的影响将是对GAN和相关化合物中电子运输的北斗七星,研究与教育的整合以及与行业的伙伴关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonid Chernyak其他文献

Forward bias annealing of proton radiation damage in NiO/Ga2O3 rectifiers
NiO/Ga2O3 整流器中质子辐射损伤的正向偏压退火
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Jian;Chao;Hsiao;M. Rasel;A. Haque;Jihyun Kim;Fan Ren;Leonid Chernyak;S. Pearton
  • 通讯作者:
    S. Pearton

Leonid Chernyak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonid Chernyak', 18)}}的其他基金

Carrier recombination dynamics in III-N photodetectors
III-N 光电探测器中的载流子复合动力学
  • 批准号:
    2341747
  • 财政年份:
    2024
  • 资助金额:
    $ 6.8万
  • 项目类别:
    Standard Grant
NSF-BSF: Electrical mitigation of radiation-induced defects in InAs/GaSb structures for infrared sensing
NSF-BSF:用于红外传感的 InAs/GaSb 结构中辐射引起的缺陷的电气缓解
  • 批准号:
    2310285
  • 财政年份:
    2023
  • 资助金额:
    $ 6.8万
  • 项目类别:
    Standard Grant
Electrical mitigation of radiation-induced defects in AlGaN/GaN photovoltaic detectors
AlGaN/GaN 光伏探测器中辐射引起的缺陷的电气缓解
  • 批准号:
    1802208
  • 财政年份:
    2018
  • 资助金额:
    $ 6.8万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Cathodoluminescence Microscope for Device Testing, Materials Research and Education
MRI:购买阴极发光显微镜用于设备测试、材料研究和教育
  • 批准号:
    1624734
  • 财政年份:
    2016
  • 资助金额:
    $ 6.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Studies of Electron Injection-Induced Effects in ZnO-based Materials and Device Structures
合作研究:ZnO基材料和器件结构中电子注入诱导效应的研究
  • 批准号:
    0900971
  • 财政年份:
    2009
  • 资助金额:
    $ 6.8万
  • 项目类别:
    Standard Grant
Studies of the Electron Injection-Induced Effects in III-Nitride Device Structures
III 族氮化物器件结构中电子注入诱导效应的研究
  • 批准号:
    0422604
  • 财政年份:
    2004
  • 资助金额:
    $ 6.8万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Cathodoluminescence System for Research in III-Nitride Nanostructures
MRI:获取用于研究 III 族氮化物纳米结构的阴极发光系统
  • 批准号:
    0216055
  • 财政年份:
    2002
  • 资助金额:
    $ 6.8万
  • 项目类别:
    Standard Grant

相似国自然基金

顺层边坡变形调控新结构——让剪让压型锚拉桩的承载机理与计算方法
  • 批准号:
    52378327
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于免疫代谢机制的新污染物毒性高通量分析方法研究
  • 批准号:
    22306033
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
煤中甲烷微孔填充动力学模型及新的孔隙测定方法研究
  • 批准号:
    52374240
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新强子态的多道幺正性方法研究
  • 批准号:
    12375132
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
激波反射图谱方法拓展的壁板气动弹性新研究
  • 批准号:
    12372233
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

SGER: A new approach to the decomposition of complex chemical kinetics
SGER:复杂化学动力学分解的新方法
  • 批准号:
    0806266
  • 财政年份:
    2008
  • 资助金额:
    $ 6.8万
  • 项目类别:
    Continuing Grant
SGER: A New Approach for Identifying DoS Attackers Based on Group Testing Techniques
SGER:基于组测试技术识别 DoS 攻击者的新方法
  • 批准号:
    0847869
  • 财政年份:
    2008
  • 资助金额:
    $ 6.8万
  • 项目类别:
    Standard Grant
SGER: A New Approach to Space Debris Elimination
SGER:消除空间碎片的新方法
  • 批准号:
    0741616
  • 财政年份:
    2007
  • 资助金额:
    $ 6.8万
  • 项目类别:
    Standard Grant
SGER: A New Approach to Assessing Microbial Risk in Drinking Water
SGER:评估饮用水微生物风险的新方法
  • 批准号:
    0439389
  • 财政年份:
    2005
  • 资助金额:
    $ 6.8万
  • 项目类别:
    Standard Grant
SGER: Collaborative Research: Lagrangian Bio-acoustic Drifters: A New Approach to Remote-Sensing of Zooplankton in the Global Ocean: Proof of Concept
SGER:合作研究:拉格朗日生物声学漂流器:全球海洋中浮游动物遥感的新方法:概念验证
  • 批准号:
    0500705
  • 财政年份:
    2005
  • 资助金额:
    $ 6.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了