Symbolic Computation and Differential and Difference Equations
符号计算与微分和差分方程
基本信息
- 批准号:0096842
- 负责人:
- 金额:$ 20.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Michael F. Singer proposes research to develop efficient algorithms to determine the algebraic structure of solutions of differential and difference equations. In particular the investigator proposes to find efficient algorithms to compute the Galois groups for large classes of differential equations and work towards finding a general algorithm to calculate the Galois group of any linear differential equation. He proposes to also find efficient algorithms to compute properties of the equations as reflected in these groups (e.g., solvability in finite terms and solvability in terms of lower order equations) and apply these algorithms to integrability problems of Hamiltonian systems. The investigator will also use these algorithms to give efficient methods to determine properties of algebraic equations (e.g., absolute irreducibility, calculation of Galois groups). He proposes to find refined criteria that will allow one to construct differential equations with a specified Galois group and extend his solution of the inverse problem for connected linear algebraic groups to arbitrary linear algebraic groups. He will apply his recently developed Galois theory of difference equations to similar problems for these equations as well. In particular he proposes to refine the algorithms to determine if difference equations can solved in finite terms and extend this to q-difference equations, greatly generalizing the work of Petkovsek, Wilf and Zeilberger, develop algorithms to determine the Galois group of such an equation and give a constructive solution of the inverse problem for these equations.
迈克尔·辛格(Michael F. Singer)提出的研究旨在开发有效的算法,以确定差分方程解决方案解决方案的代数结构。特别是,研究者建议找到有效的算法来计算大型微分方程的Galois组,并致力于找到一般算法来计算任何线性微分方程的Galois组。他建议还发现有效的算法来计算这些组中反映的方程属性(例如,以有限的术语和较低方程式的溶解性为单位),并将这些算法应用于汉密尔顿系统的集成性问题。研究者还将使用这些算法来提供有效的方法来确定代数方程的特性(例如,绝对不可约性,GALOIS组的计算)。他建议找到精致的标准,以允许一个人使用指定的Galois组构建微分方程,并将其针对连接的线性代数组的反问题扩展到任意线性代数组。他将把他最近开发的GALOIS差异方程式理论应用于这些方程式的类似问题。特别是他提议优化算法,以确定差异方程是否可以以有限的术语解决,并将其扩展到Q-差异方程式,从而大大推广了Petkovsek,Wilf和Zeilberger的工作,并开发了算法来确定这些方程的Galois组,并为这些方程提供反向问题的建设性解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Singer其他文献
Gluing theorems for complete anti-self-dual spaces
完全反自对偶空间的粘合定理
- DOI:
10.1007/s00039-001-8230-8 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Michael Singer - 通讯作者:
Michael Singer
Adherence to Dietary Indexes by Diabetes and Hypertension Status among PLCO Cancer Screening Trial Participants
- DOI:
10.1093/advances/7.1.38a - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
Mireya Diaz;Steven Chang;Michael Singer - 通讯作者:
Michael Singer
Anomalous effect of mazindol on dopamine uptake as measured by in vivo voltammetry and microdialysis
通过体内伏安法和微透析测量马吲哚对多巴胺摄取的异常作用
- DOI:
10.1016/0304-3940(92)90523-a - 发表时间:
1992 - 期刊:
- 影响因子:2.5
- 作者:
J. Ng;S. Menacherry;B. J. Liem;Dina Anderson;Michael Singer;J. B. Justice - 通讯作者:
J. B. Justice
Determination of the augmentation terminal for finite abelian groups
- DOI:
10.1090/s0002-9904-1977-14435-2 - 发表时间:
1977-11 - 期刊:
- 影响因子:1.3
- 作者:
Michael Singer - 通讯作者:
Michael Singer
Association of Early Anatomic Response with Visual Function in Neovascular Age-Related Macular Degeneration
- DOI:
10.1016/j.ophtha.2021.05.011 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Michael Singer;Rishi P. Singh;Andrea Gibson;Hadi Moini;Kimberly Reed;Robert Vitti;Weiming Du;David Eichenbaum - 通讯作者:
David Eichenbaum
Michael Singer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Singer', 18)}}的其他基金
Collaborative Research: Impacts of Dynamic, Climate-Driven Water Availability on Tree Water Use and Health in Mediterranean Riparian Forests
合作研究:气候驱动的动态水资源供应对地中海河岸森林树木用水和健康的影响
- 批准号:
1700555 - 财政年份:2017
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
Collaborative Research: Effects of forest fragmentation on Lepidopteran herbivores of contrasting diet breadth
合作研究:森林破碎化对不同饮食宽度的鳞翅目食草动物的影响
- 批准号:
1556766 - 财政年份:2016
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: Nutrient-mediated Manipulation of Host Feeding Behavior by a Parasitoid
论文研究:拟寄生物对宿主摄食行为的营养介导操纵
- 批准号:
1501538 - 财政年份:2015
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
Monopole moduli spaces and manifolds with corners
单极模空间和带角流形
- 批准号:
EP/K036696/1 - 财政年份:2014
- 资助金额:
$ 20.83万 - 项目类别:
Research Grant
DISSERTATION RESEARCH: A mechanistic test of the keystone mutualism hypothesis
论文研究:基石互利共生假说的机械检验
- 批准号:
1404177 - 财政年份:2014
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
Collaborative Research: Establishing Process Links Between Streamflow, Sediment Transport/Storage, and Biogeochemical Processing of Mercury
合作研究:建立水流、沉积物运输/储存和汞生物地球化学处理之间的过程联系
- 批准号:
1226741 - 财政年份:2013
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
AF: Small: Symbolic Computation and Difference and Differential Equations
AF:小:符号计算以及差分和微分方程
- 批准号:
1017217 - 财政年份:2010
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: The role of toxin complementation in herbivore defense
论文研究:毒素补充在草食动物防御中的作用
- 批准号:
1011503 - 财政年份:2010
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
How Changes in Diet Can Enable Caterpillars to Overcome Parasite Infection
饮食的改变如何使毛毛虫克服寄生虫感染
- 批准号:
0744676 - 财政年份:2008
- 资助金额:
$ 20.83万 - 项目类别:
Continuing Grant
Symbolic Computation and Differential and Difference Equations
符号计算与微分和差分方程
- 批准号:
0634123 - 财政年份:2006
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
相似国自然基金
符号计算工具在微分系统分岔分析中的应用研究
- 批准号:12301647
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自适应笛卡尔网格-格子波尔兹曼方法和自动微分方法的高效非定常流动导数计算方法研究
- 批准号:12302379
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
对两类椭圆型随机偏微分方程数值计算的研究
- 批准号:12301497
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有随机场系数的偏微分方程反问题自适应计算方法研究
- 批准号:12171042
- 批准年份:2021
- 资助金额:51 万元
- 项目类别:面上项目
基于符号计算的代数微分和差分方程的理论及算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Symbolic computation for differential equation based systems
基于微分方程的系统的符号计算
- 批准号:
2744977 - 财政年份:2022
- 资助金额:
$ 20.83万 - 项目类别:
Studentship
Design theory for estimation and control of nonlinear systems by using symbolic computation for rings of differential operators
微分算子环符号计算非线性系统估计与控制的设计理论
- 批准号:
21K21285 - 财政年份:2021
- 资助金额:
$ 20.83万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
AF: Small: Symbolic Computation and Difference and Differential Equations
AF:小:符号计算以及差分和微分方程
- 批准号:
1017217 - 财政年份:2010
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
Symbolic Computation and Differential and Difference Equations
符号计算与微分和差分方程
- 批准号:
0634123 - 财政年份:2006
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
Study on Algorithms for D-Modules.
D-模块算法研究。
- 批准号:
13640192 - 财政年份:2001
- 资助金额:
$ 20.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)