AF: Small: Symbolic Computation and Difference and Differential Equations
AF:小:符号计算以及差分和微分方程
基本信息
- 批准号:1017217
- 负责人:
- 金额:$ 47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many of the functions of interest in mathematics and physics are defined by difference or differential equations. Understanding their algebraic properties is key to using these functions to describe physical and mathematical phenomena. The investigator will develop algorithms that will reveal these properties. In particular, he will develop algorithms to determine the algebraic and differential relations that occur among solutions of a given set of linear difference equations. In addition, he will develop theory and give algorithms to measure the algebraic behavior of solutions of parameterized linear differential equations as one varies the parameter. Finally, he proposes to attack the problem of factoring underdetermined systems of partial differential equations.Although disparate in appearance, these problems will be attacked using techniques based on studying the underlying symmetries of the defining equations. In the past, the investigator has contributed to the development of theory and algorithms to solve differential and difference equations, in particular to the Galois theories of these equations and algorithms to solve them in closed form. The present project in part refines and extends this work but goes beyond to attack the broader problems mentioned above.This research addresses foundational and computational issues concerning the algebraic behavior of systems of linear difference and differential equations. It allows researchers in many scientific fields to understand aspects of the qualitative behavior of solutions of these equations. The researcher will develop algorithms that that will be useful to number theorists, combinatorists and analysts. In addition, the investigator anticipates that these algorithms will form the foundation on which Maple and Mathematica code are based and so have an impact on the education and day-to-day work of engineers and other scientists.Key components of this project are the development of human resources, the fostering of interactions with other scientific fields and the advancement of international collaborations. The investigator will continue to not only train his Ph.D. students but to further develop with his colleagues a program at NC State University to train students in a broad range of topics in Symbolic Computation. He will sponsor a postdoctoral scholar, involving this scholar in the research proposed here as well as develop the scholar's teaching skills and integrate the scholar into the scientific community. He will continue and expand his work on revising the undergraduate Abstract Algebra curriculum to include Symbolic Computation as a core topic. In addition he will continue to organize workshops aimed at students and colleagues in diverse fields to disseminate to a broad scientific community the ideas of Symbolic Computation in general and Symbolic Analysis in particular. He will continue his recent collaborations with researchers in Germany, France and China and will involve graduate students from NC State University in these projects, allowing them to integrate themselves in the international research community.
数学和物理学中许多有趣的函数都是由差分方程或微分方程定义的。了解它们的代数性质是使用这些函数描述物理和数学现象的关键。研究人员将开发能够揭示这些特性的算法。特别是,他将开发算法来确定给定线性差分方程组的解之间出现的代数和微分关系。此外,他还将发展理论并给出算法来测量参数化线性微分方程解在改变参数时的代数行为。最后,他提出解决偏微分方程欠定系统的因式分解问题。虽然表面上各不相同,但这些问题将使用基于研究定义方程的基本对称性的技术来解决。过去,研究者为求解微分方程和差分方程的理论和算法的发展做出了贡献,特别是这些方程的伽罗瓦理论和以封闭形式求解它们的算法。目前的项目部分地完善和扩展了这项工作,但超越了解决上述更广泛的问题。这项研究解决了有关线性差分和微分方程组的代数行为的基础和计算问题。它使许多科学领域的研究人员能够了解这些方程解的定性行为的各个方面。研究人员将开发对数论学家、组合学家和分析师有用的算法。此外,研究人员预计这些算法将构成 Maple 和 Mathematica 代码的基础,从而对工程师和其他科学家的教育和日常工作产生影响。该项目的关键组成部分是开发人力资源、促进与其他科学领域的互动以及推进国际合作。研究人员不仅将继续培养他的博士学位。学生,但与他的同事进一步开发北卡罗来纳州立大学的一个项目,以培训学生符号计算的广泛主题。他将赞助一名博士后学者,让该学者参与此处提出的研究,并发展该学者的教学技能并将该学者融入科学界。他将继续并扩展他的本科抽象代数课程修订工作,将符号计算作为核心主题。此外,他将继续组织针对不同领域的学生和同事的研讨会,向广泛的科学界传播符号计算的一般思想,特别是符号分析的思想。他将继续与德国、法国和中国的研究人员最近的合作,并将让北卡罗来纳州立大学的研究生参与这些项目,使他们能够融入国际研究界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Singer其他文献
Gluing theorems for complete anti-self-dual spaces
完全反自对偶空间的粘合定理
- DOI:
10.1007/s00039-001-8230-8 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Michael Singer - 通讯作者:
Michael Singer
Anomalous effect of mazindol on dopamine uptake as measured by in vivo voltammetry and microdialysis
通过体内伏安法和微透析测量马吲哚对多巴胺摄取的异常作用
- DOI:
10.1016/0304-3940(92)90523-a - 发表时间:
1992 - 期刊:
- 影响因子:2.5
- 作者:
J. Ng;S. Menacherry;B. J. Liem;Dina Anderson;Michael Singer;J. B. Justice - 通讯作者:
J. B. Justice
Antibasement membrane antibody disease without clinical evidence of renal disease.
无肾脏疾病临床证据的抗基底膜抗体疾病。
- DOI:
10.1164/ajrccm/142.1.234 - 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
D. Bell;Susan L. Moffatt;Michael Singer;P. Munt - 通讯作者:
P. Munt
Determination of the augmentation terminal for finite abelian groups
- DOI:
10.1090/s0002-9904-1977-14435-2 - 发表时间:
1977-11 - 期刊:
- 影响因子:1.3
- 作者:
Michael Singer - 通讯作者:
Michael Singer
NAPLES, ITALY
意大利那不勒斯
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:3.1
- 作者:
M. Wilding;Michael Singer;P. Fehr;F. Haeberlin;Felix Roth;R. Lachat;L. di Matteo;Clemente Capobianco;B. Dale - 通讯作者:
B. Dale
Michael Singer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Singer', 18)}}的其他基金
Collaborative Research: Impacts of Dynamic, Climate-Driven Water Availability on Tree Water Use and Health in Mediterranean Riparian Forests
合作研究:气候驱动的动态水资源供应对地中海河岸森林树木用水和健康的影响
- 批准号:
1700555 - 财政年份:2017
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: Effects of forest fragmentation on Lepidopteran herbivores of contrasting diet breadth
合作研究:森林破碎化对不同饮食宽度的鳞翅目食草动物的影响
- 批准号:
1556766 - 财政年份:2016
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: Nutrient-mediated Manipulation of Host Feeding Behavior by a Parasitoid
论文研究:拟寄生物对宿主摄食行为的营养介导操纵
- 批准号:
1501538 - 财政年份:2015
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Monopole moduli spaces and manifolds with corners
单极模空间和带角流形
- 批准号:
EP/K036696/1 - 财政年份:2014
- 资助金额:
$ 47万 - 项目类别:
Research Grant
DISSERTATION RESEARCH: A mechanistic test of the keystone mutualism hypothesis
论文研究:基石互利共生假说的机械检验
- 批准号:
1404177 - 财政年份:2014
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: Establishing Process Links Between Streamflow, Sediment Transport/Storage, and Biogeochemical Processing of Mercury
合作研究:建立水流、沉积物运输/储存和汞生物地球化学处理之间的过程联系
- 批准号:
1226741 - 财政年份:2013
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: The role of toxin complementation in herbivore defense
论文研究:毒素补充在草食动物防御中的作用
- 批准号:
1011503 - 财政年份:2010
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
How Changes in Diet Can Enable Caterpillars to Overcome Parasite Infection
饮食的改变如何使毛毛虫克服寄生虫感染
- 批准号:
0744676 - 财政年份:2008
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
Symbolic Computation and Differential and Difference Equations
符号计算与微分和差分方程
- 批准号:
0634123 - 财政年份:2006
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Workshops for NCSU/China Research and Educational Partnership In Symbolic Computation
北卡罗来纳州立大学/中国符号计算研究与教育合作研讨会
- 批准号:
0456285 - 财政年份:2005
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
相似国自然基金
单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
- 批准号:82304883
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
- 批准号:82372561
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
- 批准号:82373082
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
- 批准号:82373304
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
AF: Small: Symbolic Computation with Certificates, Sparsity and Error Correction
AF:小:带有证书、稀疏性和纠错的符号计算
- 批准号:
1717100 - 财政年份:2017
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
AF: Small: Numeric-Symbolic Techniques for Geometric Problems in Algebra and Analysis
AF:小:代数和分析中几何问题的数值符号技术
- 批准号:
1423228 - 财政年份:2014
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
AF: Small: Symbolic computation with sparsity, error checking and error correction
AF:小:具有稀疏性、错误检查和纠错的符号计算
- 批准号:
1421128 - 财政年份:2014
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
AF: Small: Relaxation Techniques in Symbolic-Numeric Computation
AF:小:符号数值计算中的松弛技术
- 批准号:
1217557 - 财政年份:2012
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
AF: Small: Efficient Exact/Certified Symbolic Computation By Hybrid Symbolic-Numeric and Parallel Methods
AF:小型:通过混合符号数字和并行方法进行高效精确/认证符号计算
- 批准号:
1115772 - 财政年份:2011
- 资助金额:
$ 47万 - 项目类别:
Standard Grant