Algorithms for the Inverse Problem of Matrix Construction
矩阵构造反问题的算法
基本信息
- 批准号:0073056
- 负责人:
- 金额:$ 11.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The inverse problem of matrix construction arises in manyareas of important applications. Matrices under constructionare supposed to satisfy certain specific constraints. Theconstraints could be inherited intrinsically from the physicalfeasibility of a certain mechanical structure or could bedriven extrinsically by the desirable property of a certaindesign parameter. This proposal intends to extend theinvestigation that the PI has been conducting in the pastyears with emphasis on the the development of numericalalgorithms for application to challenging inverse problems.Four specific inverse problems of matrix construction willbe studied via three possible numerical approaches. Techniquesto be used involves computer experiments, high resolutiongraphics and symbolic manipulation, in conjunction withmathematical analysis. This project is expected to findimportant applications ranging from new development ofnumerical algorithms to theoretic solution of difficultproblems. Since matrix reconstruction with specifiedproperties arises from a remarkably wide area of disciplines,the resulting technology would have substantial impact on theprogress in scientific and engineering fields.In the era of information and digital technologies,massive data processing becomes an imperative taskat almost every level of applications. In many situationsthe digitized information is gathered and stored as a datamatrix. Nonetheless, because most of the informationgathering devices or methods have only finite bandwidth, onecannot avoid the fact that the data collected often are notexact. Signals received by antenna arrays often arecontaminated by instrumental noises; astronomical imagesacquired by telescopes often are blurred by atmosphericturbulence; and even empirical data obtained in laboratoriesoften do not satisfy intrinsic physical constraints. Beforeany forward analysis technique can be applied, it is importantto first reconstruct the data matrices so that the inexactnessis reduced while certain feasibility conditions are satisfied.The general objective of this proposal is to develop numericalalgorithms to carry out this kind of data reconstruction task.The work in this proposal concerns the mathematical theory andthe numerical implementation of three algorithms for fourspecific inverse construction problems. This investigationcould lead to improved techniques for use in several nationalstrategic areas, including ground-based astro-imagingprocessing, medicine, communications, and laser technology.
矩阵构造的逆问题出现在许多重要应用领域。正在构建的矩阵应该满足某些特定的约束。这些约束可以从本质上继承自特定机械结构的物理可行性,或者可以由特定设计参数的期望属性从外在驱动。该提案旨在扩展 PI 过去几年进行的研究,重点是开发应用于具有挑战性的逆问题的数值算法。将通过三种可能的数值方法研究矩阵构造的四个特定逆问题。所使用的技术涉及计算机实验、高分辨率图形和符号操作以及数学分析。 该项目预计将找到从数值算法的新发展到困难问题的理论解决等重要应用。由于具有特定性质的矩阵重构涉及的学科领域非常广泛,由此产生的技术将对科学和工程领域的进步产生重大影响。在信息和数字技术时代,海量数据处理几乎成为各个应用层面的一项紧迫任务。 。 在许多情况下,数字化信息被收集并存储为数据矩阵。然而,由于大多数信息收集设备或方法只有有限的带宽,因此无法避免收集到的数据往往不准确。天线阵列接收到的信号常常受到仪器噪声的污染;望远镜获取的天文图像常常因大气湍流而变得模糊;甚至在实验室获得的经验数据也常常不能满足内在的物理限制。在应用任何正向分析技术之前,重要的是首先重建数据矩阵,以便在满足某些可行性条件的同时减少不精确性。本提案的总体目标是开发数值算法来执行此类数据重建任务。该提案涉及四个特定逆构造问题的数学理论和三种算法的数值实现。这项研究可能会改进用于多个国家战略领域的技术,包括地面天文成像处理、医学、通信和激光技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moody Chu其他文献
Moody Chu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moody Chu', 18)}}的其他基金
Preparing Hamiltonians for Quantum Simulation: A Computational Framework for Cartan Decomposition via Lax Dynamics
为量子模拟准备哈密顿量:通过 Lax 动力学进行嘉当分解的计算框架
- 批准号:
2309376 - 财政年份:2023
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
From Quantum Entanglement to Tensor Decomposition by Global Optimization
从量子纠缠到全局优化的张量分解
- 批准号:
1912816 - 财政年份:2019
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Numerical Algorithms as Dynamcal Systems - Structure Preservation, Convergence Theory, and Rediscretization
作为动态系统的数值算法 - 结构保持、收敛理论和重新离散化
- 批准号:
1316779 - 财政年份:2013
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Automated Structure Generation, Error Correction, and Semi-Definite Programming Techniques for Structured Quadratic Inverse Eigenvale Problems: Theory, Algorithms and Applications
结构化二次反特征值问题的自动结构生成、纠错和半定编程技术:理论、算法和应用
- 批准号:
1014666 - 财政年份:2010
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
- 批准号:
0732299 - 财政年份:2007
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Collaborative Proposal: Quadratic Inverse Eigenvalue Problems for Model Updating in Science and Engineering: Theory and Computation
合作提案:科学与工程模型更新的二次逆特征值问题:理论与计算
- 批准号:
0505880 - 财政年份:2005
- 资助金额:
$ 11.6万 - 项目类别:
Continuing Grant
The Centroid Decomposition and Other Approximations to the SVD
SVD 的质心分解和其他近似
- 批准号:
0204157 - 财政年份:2002
- 资助金额:
$ 11.6万 - 项目类别:
Continuing Grant
Adaptive Control Algorithms for Adaptive Optics Applications
用于自适应光学应用的自适应控制算法
- 批准号:
9803759 - 财政年份:1998
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Eigenvalue Problems
数学科学:反特征值问题
- 批准号:
9422280 - 财政年份:1995
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Matrix Differential Equations and Their Applications
数学科学:矩阵微分方程及其应用
- 批准号:
9123448 - 财政年份:1992
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
相似国自然基金
面向电磁场逆问题的高维多目标电磁学优化算法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波无损检测中的电磁逆散射问题和高效无网格成像算法研究
- 批准号:
- 批准年份:2019
- 资助金额:62 万元
- 项目类别:
基于有限谱数据重构球面分层介质折射率的稳定性研究
- 批准号:11901304
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
正则Sturm-Liouville算子逆谱问题的矩阵算法及收敛性研究
- 批准号:11901176
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于传输特征值的具有不连续折射率内部传输问题逆谱分析
- 批准号:11871031
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Breakthrough integrator for the gravitational N-body problem and its application to extrasolar systems
引力N体问题的突破性积分器及其在太阳系外系统中的应用
- 批准号:
16K13781 - 财政年份:2016
- 资助金额:
$ 11.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
DASSIM-RT and Compressed Sensing-Based Inverse Planning
DASSIM-RT 和基于压缩感知的逆规划
- 批准号:
9269990 - 财政年份:2014
- 资助金额:
$ 11.6万 - 项目类别:
DASSIM-RT and Compressed Sensing-Based Inverse Planning
DASSIM-RT 和基于压缩感知的逆规划
- 批准号:
8643085 - 财政年份:2014
- 资助金额:
$ 11.6万 - 项目类别:
A study of a high accurate numerical method for the inverse problem in the wave equation
波动方程反问题的高精度数值方法研究
- 批准号:
23540152 - 财政年份:2011
- 资助金额:
$ 11.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inverse Problem for Estimating Structure of Biological Macromolecules from SAXS
利用 SAXS 估计生物大分子结构的反问题
- 批准号:
8518388 - 财政年份:2010
- 资助金额:
$ 11.6万 - 项目类别: