Inverse Problem for Estimating Structure of Biological Macromolecules from SAXS
利用 SAXS 估计生物大分子结构的反问题
基本信息
- 批准号:8518388
- 负责人:
- 金额:$ 25.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-20 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAlgorithmsBiochemistryBiologicalCollaborationsComplexComputer SimulationComputing MethodologiesDataData SetDevelopmentDiseaseExperimental ModelsHealthHigh Performance ComputingImageInterdisciplinary StudyInvestigationMacromolecular ComplexesMeasuresMethodologyMethodsModelingMolecularMolecular StructureOutcomePatternPharmaceutical PreparationsProcessPropertyProteinsResearchResearch Project GrantsResolutionRoentgen RaysScienceScientistSolutionsStructureSystemTechnologyTimeUncertaintyVariantX-Ray Crystallographyfallshigh end computerhuman diseaseimprovedmacromolecular assemblymacromoleculemathematical modelmeetingsmultidisciplinarynext generationnovelparticleprotein functionreconstructionresearch studystructural biologytooltwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): Technologies to rapidly obtain information about the structure of macromolecular complexes are needed to understand how these complexes function and, in particular, how aberrant interactions between molecules may result in human disease. Small-angle X-ray scattering is a relatively simple experimental method to obtain low-resolution information that offers advantages over methods such as X-ray crystallography and NMR. However, recovering information about the structure of a molecule from a scattering pattern is an extremely ill-posed and ill-conditioned mathematical inverse problem. In addition, evaluating mathematical models for a scattering pattern requires a computationally demanding, high dimensional integration. As a consequence of these difficulties, the current state of practice in SAXS reconstruction of molecular structure falls short of its potential as a scientific tool. The proposed research project is a multidisciplinary investigation into the inverse problem of determining structural information about complex bio-molecules from SAXS scattering patterns. In a close, well-established partnership with biochemists using SAXS in their research, a team of computational scientists, mathematicians, and statisticians will undertake a systematic investigation of the mathematical properties of the SAXS inverse problem using new statistical and mathematical tools, devise novel computational methods for computing solutions of the inverse problem for specific data sets, undertake an analysis quantifying the effects of model uncertainty, experimental error, and computational error on identifications made using SAXS data, and apply these methods to biomedically relevant experimental systems. The project is driven by specific research problems in biochemistry and structural biology, where extracting all available information from experimental data is essential to revealing low-resolution information for large macromolecules or complexes in solution. Such information advances understanding of the function of proteins and macromolecular assemblies in health and disease.
描述(由申请人提供):需要快速获取有关大分子复合物结构的信息,以了解这些复合物如何发挥作用,尤其是分子之间的异常相互作用如何导致人类疾病。小角度X射线散射是一种相对简单的实验方法,可获得低分辨率信息,比X射线晶体学和NMR等方法具有优势。但是,从散射模式中恢复有关分子结构的信息是一个极度不良且条件不足的数学反问题。另外,评估散射模式的数学模型需要计算苛刻的高维积分。由于这些困难,分子结构的重建中的当前实践状态均未达到其作为科学工具的潜力。拟议的研究项目是对确定有关萨克斯散射模式复杂生物分子的结构信息的反问题的多学科研究。在与生物化学家的紧密合作伙伴关系中,使用SAXS在他们的研究中,计算科学家,数学家和统计学家团队将对SAXS逆问题的数学属性进行系统调查,使用新的统计和数学工具,并设计新颖的计算工具用于计算特定数据集的反问题解决方案的方法,进行分析,量化模型不确定性,实验误差和计算误差对使用SAXS数据的识别的影响,并将这些方法应用于生物医学相关的实验系统。该项目是由生物化学和结构生物学方面的特定研究问题驱动的,其中从实验数据中提取所有可用信息对于揭示溶液中大型大分子或复合物的低分辨率信息至关重要。这些信息进一步了解了蛋白质和大分子组件在健康和疾病中的功能的理解。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Testing Scientific Software: A Systematic Literature Review.
- DOI:10.1016/j.infsof.2014.05.006
- 发表时间:2014-10-01
- 期刊:
- 影响因子:3.9
- 作者:Kanewala, Upulee;Bieman, James M.
- 通讯作者:Bieman, James M.
A COMPUTATIONAL MEASURE THEORETIC APPROACH TO INVERSE SENSITIVITY PROBLEMS II: A POSTERIORI ERROR ANALYSIS.
- DOI:10.1137/100785958
- 发表时间:2012
- 期刊:
- 影响因子:2.9
- 作者:Butler T;Estep D;Sandelin J
- 通讯作者:Sandelin J
A numerical method for solving a stochastic inverse problem for parameters.
- DOI:10.1016/j.anucene.2012.05.016
- 发表时间:2013-02
- 期刊:
- 影响因子:1.9
- 作者:Butler, T.;Estep, D.
- 通讯作者:Estep, D.
Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models.
- DOI:10.1016/j.advwatres.2015.01.011
- 发表时间:2015-04-01
- 期刊:
- 影响因子:4.7
- 作者:Butler, T.;Graham, L.;Estep, D.;Dawson, C.;Westerink, J. J.
- 通讯作者:Westerink, J. J.
Laplace Variational Approximation for Semiparametric Regression in the Presence of Heteroskedastic Errors.
存在异方差误差时半参数回归的拉普拉斯变分逼近。
- DOI:10.1080/10618600.2014.983642
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Bugbee,BruceD;Breidt,FJay;vanderWoerd,MarkJ
- 通讯作者:vanderWoerd,MarkJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay Breidt其他文献
Jay Breidt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay Breidt', 18)}}的其他基金
Inverse Problem for Estimating Structure of Biological Macromolecules from SAXS
利用 SAXS 估计生物大分子结构的反问题
- 批准号:
8132399 - 财政年份:2010
- 资助金额:
$ 25.12万 - 项目类别:
Inverse Problem for Estimating Structure of Biological Macromolecules from SAXS
利用 SAXS 估计生物大分子结构的反问题
- 批准号:
8307892 - 财政年份:2010
- 资助金额:
$ 25.12万 - 项目类别:
Inverse Problem for Estimating Structure of Biological Macromolecules from SAXS
利用 SAXS 估计生物大分子结构的反问题
- 批准号:
8045564 - 财政年份:2010
- 资助金额:
$ 25.12万 - 项目类别:
相似国自然基金
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
The role of stress, social support, and brain function on alcohol misuse in women
压力、社会支持和大脑功能对女性酗酒的影响
- 批准号:
10676428 - 财政年份:2023
- 资助金额:
$ 25.12万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 25.12万 - 项目类别:
Exploiting translation elongation for improved biologics manufacturing
利用平移伸长来改进生物制品的制造
- 批准号:
10760927 - 财政年份:2023
- 资助金额:
$ 25.12万 - 项目类别:
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
- 批准号:
10734357 - 财政年份:2023
- 资助金额:
$ 25.12万 - 项目类别:
An Integrated Biomarker Approach to Personalized, Adaptive Deep Brain Stimulation in Parkinson Disease
帕金森病个性化、适应性深部脑刺激的综合生物标志物方法
- 批准号:
10571952 - 财政年份:2023
- 资助金额:
$ 25.12万 - 项目类别: