Collaborative Proposal: Quadratic Inverse Eigenvalue Problems for Model Updating in Science and Engineering: Theory and Computation

合作提案:科学与工程模型更新的二次逆特征值问题:理论与计算

基本信息

  • 批准号:
    0505880
  • 负责人:
  • 金额:
    $ 20.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

This project is devoted to the study of three inverse quadraticeigenproblems with their pertinence to physical and engineeringapplications. The aim is to develop theoretic understanding andderive numerical algorithms for the quadratic model reconstructionso that the inexactness and uncertainty inherent in the model dueto the limitation of current technologies are reduced while certainspecific mathematical conditions are satisfied. The most difficulttask in the quadratic model reconstruction is to satisfy the associatedconstraints which could be inherited intrinsically from the physicalfeasibility of a certain mechanical structure or could be drivenextrinsically by the desirable property of a certain design parameter.The greatest challenge, which is also an imperative requirement inpractice, is that the reconstruction must be carried out using onlypartial eigeninformation which are available by the state-of-the-artcomputational techniques. The inverse problem of constrained modelreconstruction is essential for the understanding and management ofcomplex systems, yet many questions on the solvability, sensitivity,and computation remain unanswered. The investigators have madesignificant contributions to the quadratic model construction problemsindividually and now intend to extend their investigation and joinexpertise to these challenging inverse problems. This proposed worktherefore should be of compelling independent interest within boththe engineering and mathematical sciences communities.In mathematical modelling, techniques of inverse problems that validate,determine, or estimate the parameters of the system according to itsobserved or expected behavior are critically important. This researchconcentrates on the inverse model reconstruction problems with theirpertinence to physical and engineering applications. These problems havebeen strongly motivitated by scietific and industrial applications,including structural mechanics such as vibration control and stabilityanalysis of bridges, buildings and highways, vibro-acoustics such aspredictive coding of sound, biomedical signal and image processing,time series forecasting, information technology, and others. Thus thisproject will impact a wide variety of industries utilizing theseapplications, including aerospace, automobile, manufacturing andbiomedical engineering. The greatest challenge facing these industriesis to manufacture increasingly improved products with limited engineeringand computing resources. A great deal of money and efforts have been spentin these industries to satisactorily perform the model updating task.However, the lack of proper theory and computational tools often forcethese industries to solve their problems in an ad hoc fashion. An improvedanalytical model that can be used with confidence for future designs isan essential tool in achieving this obejective. The propsed research hasnot only strong mathematical foundation but also significant matematicalmodelling and experimental aspects using idustrial data which should beinstantly welcome by the industries. Furthermore, the students workingon this project for four years will receive a valuable interdisciplnarytraining blending mathematics and scietific computing with various areasof engineering and applied sciences. Such expertise is rare to find,but there is an increasing demand both inacademia and industries.
该项目致力于研究三个反二次特征根问题及其与物理和工程应用的相关性。其目的是发展二次模型重构的理论理解并推导数值算法,从而在满足某些特定数学条件的同时,减少由于现有技术的限制而导致的模型固有的不精确性和不确定性。二次模型重构中最困难的任务是满足相关约束,这些约束可以从本质上继承于某种机械结构的物理可行性,或者可以由某个设计参数的理想特性外在驱动。最大的挑战,也是迫切的要求实际上,重建必须仅使用通过最先进的计算技术可获得的部分特征信息来进行。约束模型重构的反问题对于理解和管理复杂系统至关重要,但许多关于可解性、敏感性和计算性的问题仍未得到解答。 研究人员分别对二次模型构建问题做出了重大贡献,现在打算扩大他们的研究范围,并结合专业知识来解决这些具有挑战性的反问题。因此,这项拟议的工作应该在工程和数学科学界引起令人信服的独立兴趣。在数学建模中,根据观察到的或预期的行为验证、确定或估计系统参数的反问题技术至关重要。这项研究集中于与物理和工程应用相关的逆模型重建问题。这些问题受到科学和工业应用的强烈推动,包括桥梁、建筑物和高速公路的振动控制和稳定性分析等结构力学,声音预测编码、生物医学信号和图像处理、时间序列预测、信息技术等振动声学,以及其他的。因此,该项目将影响利用这些应用的各种行业,包括航空航天、汽车、制造和生物医学工程。这些行业面临的最大挑战是利用有限的工程和计算资源制造日益改进的产品。这些行业花费了大量的资金和精力来令人满意地执行模型更新任务。然而,缺乏适当的理论和计算工具往往迫使这些行业以临时的方式解决他们的问题。可以放心地用于未来设计的改进的分析模型是实现这一目标的重要工具。所提出的研究不仅具有坚实的数学基础,而且还具有使用工业数据进行数学建模和实验的重要意义,应该立即受到业界的欢迎。此外,从事该项目四年的学生将接受宝贵的跨学科培训,将数学和科学计算与工程和应用科学的各个领域相结合。 这种专业知识很少见,但学术界和工业界的需求都在不断增加。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moody Chu其他文献

Moody Chu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moody Chu', 18)}}的其他基金

Preparing Hamiltonians for Quantum Simulation: A Computational Framework for Cartan Decomposition via Lax Dynamics
为量子模拟准备哈密顿量:通过 Lax 动力学进行嘉当分解的计算框架
  • 批准号:
    2309376
  • 财政年份:
    2023
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
From Quantum Entanglement to Tensor Decomposition by Global Optimization
从量子纠缠到全局优化的张量分解
  • 批准号:
    1912816
  • 财政年份:
    2019
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
Numerical Algorithms as Dynamcal Systems - Structure Preservation, Convergence Theory, and Rediscretization
作为动态系统的数值算法 - 结构保持、收敛理论和重新离散化
  • 批准号:
    1316779
  • 财政年份:
    2013
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
Automated Structure Generation, Error Correction, and Semi-Definite Programming Techniques for Structured Quadratic Inverse Eigenvale Problems: Theory, Algorithms and Applications
结构化二次反特征值问题的自动结构生成、纠错和半定编程技术:理论、算法和应用
  • 批准号:
    1014666
  • 财政年份:
    2010
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732299
  • 财政年份:
    2007
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
The Centroid Decomposition and Other Approximations to the SVD
SVD 的质心分解和其他近似
  • 批准号:
    0204157
  • 财政年份:
    2002
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Continuing Grant
Algorithms for the Inverse Problem of Matrix Construction
矩阵构造反问题的算法
  • 批准号:
    0073056
  • 财政年份:
    2000
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
Adaptive Control Algorithms for Adaptive Optics Applications
用于自适应光学应用的自适应控制算法
  • 批准号:
    9803759
  • 财政年份:
    1998
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Eigenvalue Problems
数学科学:反特征值问题
  • 批准号:
    9422280
  • 财政年份:
    1995
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Matrix Differential Equations and Their Applications
数学科学:矩阵微分方程及其应用
  • 批准号:
    9123448
  • 财政年份:
    1992
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Standard Grant

相似国自然基金

指向提议者的共情关怀对第三方惩罚行为的影响:心理、脑与计算机制
  • 批准号:
    32371102
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
经济博弈中提议者对先前第三方干预者的分配公平性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于深度层次特征相似性度量的视觉跟踪方法研究
  • 批准号:
    61773397
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
构造类型专家系统及其开发工具的研究
  • 批准号:
    68875006
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Proposal of fall prevention method incorporating time series change analysis of gait parameters using dual task walking
使用双任务行走结合步态参数时间序列变化分析的跌倒预防方法的提案
  • 批准号:
    25350663
  • 财政年份:
    2013
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Estimation of Personal Optimum Exercise Strength and Proposal of Exercise Method for Emotional Fitness Practice
情绪健身实践的个人最佳运动强度估算及运动方法建议
  • 批准号:
    25330332
  • 财政年份:
    2013
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum Effect on Thermoelectric effect and Proposal of Nano Thermomagnetic device
量子效应对热电效应的影响及纳米热磁器件的提出
  • 批准号:
    20340101
  • 财政年份:
    2008
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Study of Relationship between Blood Sialoproteins and Pathological Condition -Proposal for Pathological Sialoproteome-
血液唾液酸蛋白与病理状态关系的研究-病理性唾液酸蛋白组的建议-
  • 批准号:
    19790397
  • 财政年份:
    2007
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Proposal: Quadratic Inverse Eigenvalue Problems for Model Updating in Science and Engineering: Theory and Computation
合作提案:科学与工程模型更新的二次逆特征值问题:理论与计算
  • 批准号:
    0505784
  • 财政年份:
    2005
  • 资助金额:
    $ 20.59万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了