Characteristic p Methods in Commutative Algebra
交换代数中的特征 p 方法
基本信息
- 批准号:9996155
- 负责人:
- 金额:$ 24.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-01-01 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Craig Huneke其他文献
Upper bound of multiplicity of F-rational rings and F-pure rings
F-有理环和 F-纯环的重数上限
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Craig Huneke;. Kei-ichi Watanabe - 通讯作者:
. Kei-ichi Watanabe
Multiplicity bounds in graded rings
分级环中的重数界限
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0.6
- 作者:
Craig Huneke;S. Takagi;Kei-ichi Watanabe - 通讯作者:
Kei-ichi Watanabe
The upper bound of multiplicity of F-pure rings and rational singularities
F-纯环和有理奇点重数的上界
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Craig Huneke;. Kei-ichi Watanabe;Kei-ichi Watanabe;Kei-ichi Watanabe;Kei-ichi Watanabe;吉田健一・渡辺敬一;Kei-ichi Watanabe;吉田健一・渡辺敬一;Kei-ichi Watanabe - 通讯作者:
Kei-ichi Watanabe
Good ideals of 2-dimensional normal singularities
二维正态奇点的良好理想
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Craig Huneke;. Kei-ichi Watanabe;Kei-ichi Watanabe - 通讯作者:
Kei-ichi Watanabe
The projective dimension of codimension two algebras presented by quadrics
- DOI:
10.1016/j.jalgebra.2013.06.038 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:
- 作者:
Craig Huneke;Paolo Mantero;Jason McCullough;Alexandra Seceleanu - 通讯作者:
Alexandra Seceleanu
Craig Huneke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Craig Huneke', 18)}}的其他基金
Travel support for an ICTP workshop
ICTP 研讨会的差旅支持
- 批准号:
1001133 - 财政年份:2010
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Homological Methods and Ideal Closures in Commutative Algebra
交换代数中的同调方法和理想闭包
- 批准号:
0244405 - 财政年份:2003
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
Characteristic p Methods in Commutative Algebra
交换代数中的特征 p 方法
- 批准号:
9731512 - 财政年份:1998
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Uniform Bounds in Noetherian Rings, The Theory of Tight Closure, and Big Cohen-Macaulay Algebras"
数学科学:“诺特环的一致界、紧闭理论和大科恩-麦考利代数”
- 批准号:
9301053 - 财政年份:1993
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
相似国自然基金
地下水超采区承压含水层系统时序InSAR监测方法
- 批准号:42374013
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于深度学习方法的南海海气耦合延伸期智能预报研究
- 批准号:42375143
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肝癌外周血测序数据中循环肿瘤DNA占比的精确解耦方法研究
- 批准号:62303271
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶读数的拓扑关联结构域识别和比对方法研究
- 批准号:62372156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于矩阵方法的电价博弈分析与控制策略研究
- 批准号:62303170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra
交换代数中的隐式化、残差交点和微分方法
- 批准号:
1802383 - 财政年份:2018
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
Topological methods for uncovering hidden low-dimensional and low-rank structure in biological networks
揭示生物网络中隐藏的低维和低秩结构的拓扑方法
- 批准号:
9261567 - 财政年份:2015
- 资助金额:
$ 24.52万 - 项目类别:
Recent Developments in Positive Characteristic Methods in Commutative Algebra: Frobenius Operators and Cartier Algebras
交换代数正特征方法的最新进展:Frobenius 算子和 Cartier 代数
- 批准号:
1507908 - 财政年份:2015
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Study on modules over commutative rings by categorical methods
交换环上模的分类方法研究
- 批准号:
26287008 - 财政年份:2014
- 资助金额:
$ 24.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)