KDI: Structure Preserving Algorithms and Model Reduction in the Natural Sciences

KDI:自然科学中的结构保持算法和模型简化

基本信息

  • 批准号:
    9873133
  • 负责人:
  • 金额:
    $ 162.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-10-01 至 2002-09-30
  • 项目状态:
    已结题

项目摘要

Structure Preserving Algorithms and Model Reduction in the Natural SciencesProject SummaryNew theoretical and computational techniques will be developed that combine research in mathematics, computer science, and the geophysical sciences. Understanding and controlling modern physical systems typically requires numerical simulations of multiscale dynamics that occur over a wide range of time and space scales. It is generally prohibitively expensive (e.g., a great deal of computational time) to simulate all of the scales involved in many naturally occurring phenomena. Scales outside the computable range must be described by a reduced model that conscientiously represent the effects of the unresolved degrees of freedom on the resolved scales. These models may also have constraints that provide reduced descriptions of the interactions with other systems. The goal of this study will be to develop both the model reduction techniques and new algorithms to address these problems.
自然科学中的结构保持算法和模型简化项目摘要将开发结合数学、计算机科学和地球物理科学研究的新理论和计算技术。 理解和控制现代物理系统通常需要对发生在广泛的时间和空间尺度上的多尺度动力学进行数值模拟。 模拟许多自然发生的现象所涉及的所有尺度通常非常昂贵(例如,大量的计算时间)。 可计算范围之外的尺度必须通过简化模型来描述,该模型认真地表示未解析的自由度对解析尺度的影响。 这些模型还可能具有提供与其他系统交互的简化描述的约束。 本研究的目标是开发模型简化技术和新算法来解决这些问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jerrold Marsden其他文献

Jerrold Marsden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jerrold Marsden', 18)}}的其他基金

Geometric Mechanics and Dynamical Systems Approach to the Theory and Computation of Chemical Reaction Rates
化学反应速率理论和计算的几何力学和动力系统方法
  • 批准号:
    0505711
  • 财政年份:
    2005
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Standard Grant
Geometric Mechanics
几何力学
  • 批准号:
    0204474
  • 财政年份:
    2002
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Standard Grant
ITR: Multiscale Analysis, Modeling, and Simulation
ITR:多尺度分析、建模和仿真
  • 批准号:
    0204932
  • 财政年份:
    2002
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Continuing Grant
Geometric Analysis of Mechanical Systems with Symmetry
具有对称性的机械系统的几何分析
  • 批准号:
    9802106
  • 财政年份:
    1998
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometry and Dynamics of Mechanical Systems with Symmetry
数学科学:对称机械系统的几何和动力学
  • 批准号:
    9633161
  • 财政年份:
    1996
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometry and Dynamics of Mechanical Systems with Symmetry
数学科学:对称机械系统的几何和动力学
  • 批准号:
    9302992
  • 财政年份:
    1993
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Reduction Theory in Mechanics and Classical Relativistic Fields
数学科学:力学和经典相对论场中的还原论
  • 批准号:
    8922704
  • 财政年份:
    1990
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Conference: From Topology to Computa- tion: Unity and Diversity in the Mathematical Sciences, August 5-9, 1990; Berkeley, California
数学科学会议:从拓扑到计算:数学科学的统一性和多样性,1990 年 8 月 5-9 日;
  • 批准号:
    8920966
  • 财政年份:
    1990
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symplectic and Poisson Geometry
数学科学:辛几何和泊松几何
  • 批准号:
    8702502
  • 财政年份:
    1987
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Stability and Chaos in Mathematical Physics
数学科学:数学物理中的稳定性和混沌
  • 批准号:
    8404506
  • 财政年份:
    1984
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Continuing Grant

相似国自然基金

南海东北部深海颗粒有机碳保存结构的时空变化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纤维束表面拓扑结构介导EMD调控Hippo通路对拔牙窝“位点保存”的作用效果及机制
  • 批准号:
    81900980
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
共创还是共毁?价值毁灭行为的结构、形成及缓冲机制研究
  • 批准号:
    71802052
  • 批准年份:
    2018
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
资源保存理论视角下员工变革承诺的结构、多层次影响机制与效果的纵向研究
  • 批准号:
    71402067
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
沉积物的粒度结构和矿物组分对长江口-杭州湾沉积有机碳保存的影响
  • 批准号:
    41106050
  • 批准年份:
    2011
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
  • 批准号:
    EP/Y033248/1
  • 财政年份:
    2024
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Research Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Standard Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    $ 162.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了