Development of a Cryogenic Femtosecond Aptureless Near-Field Scanning Optical Microscope for Nanostructure Research
开发用于纳米结构研究的低温飞秒无孔近场扫描光学显微镜
基本信息
- 批准号:9802784
- 负责人:
- 金额:$ 11.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-01 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9802784 Levy This award provides partial support to develop a variable- temperature "apertureless" near -field scanning optical microscope (ANSOM) for studying local electronic and lattice dynamics in nanostructured optoelectronic materials. The instrument will have unique and unprecedented capabilities, combining near-atomic spatial resolution, femtosecond temporal resolution, a wide operating temperature range (1.6K-400K), and operation in magnetic fields up to 10 Tesla. The instrument is specifically suited for the study of material properties which couple to refractive index changes. The contrast mechanism for ANSOM comes from measuring small phase shifts in scattered light from an atomic or magnetic force microscope tip. By modulating the tip-sample separation, it is possible to measure local sample polarizabilities (electric or magnetic) at length scales significantly smaller than those attainable by either conventional optical or fiber-based near-field scanning optical microscopes (NSOMs). The instrument design will also allow it to be used as a confocal scanning optical microscope, which can focus or collect light with high efficiency and diffraction-limited spatial resolution. There are presently several low-temperature NSOMs operating in laboratories around the world. Sub-wavelength spatial resolution for these instruments is obtained by scanning a tapered optical fiber close to the sample to form an image. However, both practical and fundamental constraints prevent the optical resolution from approaching that of atomic-force microscopy (AFM) or scanning tunneling microscopy (STM). The unique power of this instrument will come from the ability to combine traditional strengths of optical methods (e.g., time resolution or energy selectivity) with the spatial resolution of atomic force microscopy. It is possible using ANSOM to achieve spatial resolution below 10 A. The combination of spatial and temporal resolution will open many new research avenues related to dynamical processes in nanometer-scale condensed matter systems. The immediate scientific applications are threefold: (1) the study of exciton dephasing in semiconductor quantum dots, (2) spectroscopic and time-resolved studies of neutral excitations in single conjugated polymer chains, and (3) lattice dynamics and domain wall motion in ferroelectrics and quantum paraelectrics. Longer-range goals include the study of magnetization dynamics in ultrathin magnetic films, applications in biology (e.g., DNA sequencing), and optically detected magnetic resonance. The construction of this instrument will benefit from the design principles of earlier pioneers in the area of low-temperature scanning probe microscopy. Principles that ensure sufficient vibration isolation, coarse approach mechanisms, etc., have been incorporated into the proposed design. Many of the critical design parameters have been assessed from the construction of a room-temperature prototype, which is currently being used to study domain dynamics in ferroelectric thin films. The construction of this instrument will provide valuable experience for students at both the graduate and undergraduate level. The project will be overseen by the principal investigator, who will direct a postdoctoral researcher, a graduate student, and several undergraduate students. The graduate student will work closely with undergraduates on various subtasks related to the larger goal of building the proposed instrument, such as writing software drivers for instruments such as lock-in amplifiers and temperature controllers. The overall goals of the project will be discussed during group meetings so that undergraduates (and graduate students) can see how their project fits in with the larger goal. Support for both the graduate and undergraduate students comes from an NSF CAREER award DMR-9701725. %%% ***
9802784征收该奖项提供了部分支持,以开发可变温度的“无孔”近距离扫描光学显微镜(ANSOM),用于研究纳米结构的光电材料中的局部电子和晶格动力学。 该仪器将具有独特且前所未有的功能,将接近原子的空间分辨率,飞秒时间分辨率,较宽的工作温度范围(1.6k-400k)组合在一起,并在最高10特斯拉的磁场中运行。 该仪器专门适合研究材料特性的研究,这些特性夫妇折射指数的变化。 ANSOM的对比机制来自于从原子或磁力显微镜尖端中测量散射光中的小相移。 通过调节尖端样本的分离,可以在长度尺度上测量局部样品极化(电或磁性)的长度明显小于常规光学或基于纤维的近场扫描光学显微镜(NSOMS)可实现的范围。 仪器设计还将允许将其用作共聚焦扫描光学显微镜,该光学显微镜可以以高效率和衍射限制的空间分辨率聚焦或收集光线。 目前,世界各地的实验室中有几个低温NSOM。 通过扫描接近样品的锥形光纤以形成图像,可获得这些仪器的次波长空间分辨率。 但是,实际和基本约束都阻止了光学分辨率接近原子力显微镜(AFM)或扫描隧道显微镜(STM)的光学分辨率。 该仪器的独特力量将来自将光学方法(例如时间分辨率或能量选择性)与原子力显微镜的空间分辨率相结合的能力。 可以使用ANSOM在10 A以下实现空间分辨率。空间和时间分辨率的组合将开放许多与纳米级凝结物质系统中动态过程相关的新研究途径。 直接的科学应用是三重的:(1)在半导体量子点中进行激子dephasing的研究,(2)单个共轭聚合物链中中性激发的光谱和时间分辨研究,以及(3)晶格动力学和域壁运动在铁罗电和量子Parealectrics和量子Paraelectrics中。 长期目标包括研究超薄磁性膜中的磁化动力学,生物学应用(例如DNA测序)以及光学检测到的磁共振。 该仪器的构建将受益于低温扫描探针显微镜区域的早期先驱者的设计原理。 确保足够的振动隔离,粗制接近机制等的原理已被纳入拟议的设计中。 从室温原型的构建中,已经评估了许多关键设计参数,该原型目前用于研究铁电薄膜中的域动力学。 该乐器的建设将为研究生和本科级别的学生提供宝贵的经验。 该项目将由首席研究员监督,他将指导博士后研究员,研究生和几位本科生。 研究生将与与建立拟议仪器的更大目标有关的各种子任务的大学生紧密合作,例如为仪器编写软件驱动程序,例如锁定放大器和温度控制器。 该项目的总体目标将在小组会议期间讨论,以便本科生(和研究生)可以看到他们的项目如何适合更大的目标。 对研究生和本科生的支持来自NSF职业奖DMR-9701725。 %%% ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Levy其他文献
Classification of 12-lead ECGs Using Digital Biomarkers and Representation Learning
使用数字生物标记和表征学习对 12 导联心电图进行分类
- DOI:
10.22489/cinc.2020.202 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
David Assaraf;Jeremy Levy;Janmajay Singh;Armand Chocron;J. Behar - 通讯作者:
J. Behar
Topological Solitons in Square-root Graphene Nanoribbons Controlled by Electric Fields
电场控制的平方根石墨烯纳米带中的拓扑孤子
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Haiyue Huang;M. Sarker;P. Zahl;C. S. Hellberg;Jeremy Levy;Ioannis Petrides;A. Sinitskii;Prineha Narang Division of Physical Sciences;College of Letters;Science;U. California;Los Angeles;California;USA. Department of Chemistry;U. Nebraska;Lincoln;Nebraska.;Usa Center for Functional Nanomaterials;Brookhaven National Laboratory;Upton;New York.;U. U. N. R. Laboratory;Washington;D. Columbia;USA. Department of physics;Astronomy;U. Pittsburgh;Pittsburgh;Pennsylvania;U. D. O. Electrical;Computer Engineering;Usa - 通讯作者:
Usa
PhysioZoo ECG: Digital electrocardiography biomarkers to assess cardiac conduction
PhysioZoo ECG:评估心脏传导的数字心电图生物标志物
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
S. Gendelman;Shany Biton;Raphaël Derman;Eran Zvuloni;Jeremy Levy;Snir Lugassy;Alexandra Alexandrovich;J. Behar - 通讯作者:
J. Behar
Generalization in medical AI: a perspective on developing scalable models
医疗人工智能的泛化:开发可扩展模型的视角
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Joachim A. Behar;Jeremy Levy;L. Celi - 通讯作者:
L. Celi
Preparing students to be leaders of the quantum information revolution
培养学生成为量子信息革命的领导者
- DOI:
10.1063/pt.6.5.20210927a - 发表时间:
2021 - 期刊:
- 影响因子:3.5
- 作者:
Chandralekha Singh;Abraham Asfaw;Jeremy Levy - 通讯作者:
Jeremy Levy
Jeremy Levy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Levy', 18)}}的其他基金
Stereoscopic Insight into Dilute Superconductivity of Perovskite Semiconductors
钙钛矿半导体稀超导性的立体洞察
- 批准号:
2225888 - 财政年份:2022
- 资助金额:
$ 11.45万 - 项目类别:
Standard Grant
Simulation of Multi-Component Fermionic Quantum Matter Using Oxide Nanoelectronics
使用氧化物纳米电子学模拟多组分费米子量子物质
- 批准号:
1913034 - 财政年份:2019
- 资助金额:
$ 11.45万 - 项目类别:
Standard Grant
NSF/DMR-BSF: Spatially Resolved Probes of Magnetism at Oxide Interfaces
NSF/DMR-BSF:氧化物界面磁性空间分辨探针
- 批准号:
1609519 - 财政年份:2016
- 资助金额:
$ 11.45万 - 项目类别:
Standard Grant
Single-Electron Mediated Charge, Spin and Lattice Interactions in Oxide Nanostructures
氧化物纳米结构中单电子介导的电荷、自旋和晶格相互作用
- 批准号:
1104191 - 财政年份:2011
- 资助金额:
$ 11.45万 - 项目类别:
Standard Grant
NEB: Scalable Sensing, Storage and Computation with a Rewritable Oxide Nanoelectronics Platform
NEB:使用可重写氧化物纳米电子平台进行可扩展传感、存储和计算
- 批准号:
1124131 - 财政年份:2011
- 资助金额:
$ 11.45万 - 项目类别:
Standard Grant
EAGER: Creation and Manipulation of Quantum States in Oxide Nanostructures with a Low-Temperature Atomic-Force Microscope
EAGER:使用低温原子力显微镜在氧化物纳米结构中创建和操纵量子态
- 批准号:
0948671 - 财政年份:2009
- 资助金额:
$ 11.45万 - 项目类别:
Standard Grant
GOALI: GHz-THz Dynamics of Nanostructured Ferroelectric Thin Films
GOALI:纳米结构铁电薄膜的 GHz-THz 动力学
- 批准号:
0704022 - 财政年份:2007
- 资助金额:
$ 11.45万 - 项目类别:
Continuing Grant
Materials World Network: Engineering the Spintronic Properties of Semiconductor Quantum Dots
材料世界网络:设计半导体量子点的自旋电子特性
- 批准号:
0602846 - 财政年份:2006
- 资助金额:
$ 11.45万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Local Dynamic Origins of Relaxor Ferroelectricity
合作研究:FRG:弛豫铁电的局部动态起源
- 批准号:
0333192 - 财政年份:2003
- 资助金额:
$ 11.45万 - 项目类别:
Standard Grant
CAREER: Atomic-Scale Optical Microscopy of Ferroelectric, Quantum Paraelectric and Ferromagnetic Films
职业:铁电、量子顺电和铁磁薄膜的原子尺度光学显微镜
- 批准号:
9701725 - 财政年份:1997
- 资助金额:
$ 11.45万 - 项目类别:
Continuing Grant
相似国自然基金
中熵合金低温协同强化及其多场耦合环境下应力腐蚀行为的研究
- 批准号:52371070
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超低温钠离子电池CEI膜原位构筑、界面输运机制及电化学性能研究
- 批准号:52302260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ABA介导CsABI5-CsCOR413PM2模块调控黄瓜耐低温的分子机制
- 批准号:32372793
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超低温水系卤素-氢气二次电池研究
- 批准号:22309172
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
超低体温循環停止における水素吸入の腎保護効果 -グリコカリックス障害の観点から-
超低温停循环中吸氢的肾保护作用——从糖萼紊乱的角度——
- 批准号:
24K12096 - 财政年份:2024
- 资助金额:
$ 11.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
低温偏光変調器を用いた高精度CMB観測によるインフレーション理論の検証
使用低温偏振调制器通过高精度 CMB 观测验证暴胀理论
- 批准号:
24KJ0663 - 财政年份:2024
- 资助金额:
$ 11.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
耐熱性とプロセス温度の低温化を両立したSiCセラミックスのTLP接合技術の開発
开发兼具耐热性和低加工温度的SiC陶瓷TLP接合技术
- 批准号:
24K08069 - 财政年份:2024
- 资助金额:
$ 11.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
表面イオニクス触媒の創製と低温電場アシスト脱水素触媒反応への応用
表面离子催化剂的制备及其在低温电场辅助脱氢催化反应中的应用
- 批准号:
24K08158 - 财政年份:2024
- 资助金额:
$ 11.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
極低温において誘起される高分子材料および高分子鎖の光変形・光運動の探究
探索极低温下引起的高分子材料和聚合物链的光学变形和光学运动
- 批准号:
24K08516 - 财政年份:2024
- 资助金额:
$ 11.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)