NEB: Scalable Sensing, Storage and Computation with a Rewritable Oxide Nanoelectronics Platform

NEB:使用可重写氧化物纳米电子平台进行可扩展传感、存储和计算

基本信息

  • 批准号:
    1124131
  • 负责人:
  • 金额:
    $ 170万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

This project is awarded under the Nanoelectronics for 2020 and Beyond competition, with support by multiple Directorates and Divisions at the National Science Foundation as well as by the Nanoelectronics Research Initiative of the Semiconductor Research Corporation.TECHNICAL: The research project explicitly addresses key scientific and technological challenges that, if overcome, could lead to a possible replacement for conventional electronics made from silicon. The novel nanoelectronics platform is based upon remarkable properties of materials composed of lanthanum aluminate and strontium titanate. The interface between these two oxide materials can be switched between an insulating and a metallic state using a sharp conducting probe. Electronic circuits can be "written" and "erased" at scales approaching the distance between atoms (two nanometers). To develop useful electronics, it is imperative to develop a scheme capable of creating and manipulating large numbers of devices. This scaling is achieved through the use of large probe arrays. Each probe must be capable of addressing multiple sites, enabling complex circuits to be fabricated on a single chip, by the device itself. The oxide heterostructures need to be grown on large manufacturable substrates: this has been demonstrated with both silicon and one other material. The research project addresses many of the core requirements for a reconfigurable storage, computing, and optical sensing platform that can scale beyond what is currently possible for silicon. The interdisciplinary research team directly addresses these scientific and technological challenges with the variety of perspectives essential for the development of breakthrough technologies.NON-TECHNICAL: This project seeks to transform exciting scientific achievements into cutting-edge information technologies. The research directly addresses the need for scaling beyond Moore's law and has the potential to create new high-tech industries, thus creating new jobs in the US that require advanced skill sets. To help address the need for highly trained workers and researchers, a new OnRamp education program is designed that specifically targets difficulties that students have in their sub-discipline while beginning their careers. OnRamp tutorials are developed by beginning graduate students as they learn the ropes of doing research. Graduate students help develop research-based learning modules, which are shared with a broader research community. Both University of Wisconsin and University of Pittsburgh continue and expand their high school outreach programs aimed at increasing the numbers of students in underrepresented groups in science and engineering disciplines.
该项目由2020年的纳米电子学和竞争之外的纳米电子学授予,并得到了国家科学基金会的多个局和部门的支持,以及半导体研究公司的纳米电子研究计划。技术项目:研究项目明确地涉及克服的关键科学和技术挑战,即使克服了可能的替补,因此可能会导致insteal insteal insteal insteal silon silon silon。新型的纳米电子平台基于由灯笼铝酸盐和钛酸标组组成的材料的显着特性。这两种氧化物材料之间的界面可以使用尖锐的导电探针在绝缘状态和金属状态之间进行切换。电子电路可以在接近原子之间的距离(两个纳米)之间“写入”和“擦除”。为了开发有用的电子产品,必须制定能够创建和操纵大量设备的方案。通过使用大型探针阵列来实现此缩放。每个探针必须能够解决多个站点,从而使设备本身在单个芯片上制造复合电路。氧化物异质结构需要在可大型制造的底物上生长:硅和另一种材料都证明了这一点。该研究项目解决了可重新配置存储,计算和光学传感平台的许多核心要求,这些要求可以扩展到硅当前可能的范围之外。跨学科研究团队直接解决了这些科学和技术挑战,其观点对于发展突破性技术所必需的各种观点。Non-Technical:该项目旨在将令人兴奋的科学成就转变为最先进的信息技术。该研究直接解决了超越摩尔定律的规模的需求,并有可能创建新的高科技行业,从而在美国创造了需要高级技能的新工作。为了帮助满足训练有素的工人和研究人员的需求,设计了一项新的OnRamp教育计划,该计划专门针对学生在开始职业时遇到的困难。 Onramp教程是通过初学者学习研究的绳索来开发的。研究生帮助开发基于研究的学习模块,这些模块与更广泛的研究社区共享。威斯康星大学和匹兹堡大学都继续并扩大其高中外展计划,旨在增加科学和工程学科中代表性不足的群体中的学生人数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Levy其他文献

Classification of 12-lead ECGs Using Digital Biomarkers and Representation Learning
使用数字生物标记和表征学习对 12 导联心电图进行分类
  • DOI:
    10.22489/cinc.2020.202
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Assaraf;Jeremy Levy;Janmajay Singh;Armand Chocron;J. Behar
  • 通讯作者:
    J. Behar
Topological Solitons in Square-root Graphene Nanoribbons Controlled by Electric Fields
电场控制的平方根石墨烯纳米带中的拓扑孤子
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haiyue Huang;M. Sarker;P. Zahl;C. S. Hellberg;Jeremy Levy;Ioannis Petrides;A. Sinitskii;Prineha Narang Division of Physical Sciences;College of Letters;Science;U. California;Los Angeles;California;USA. Department of Chemistry;U. Nebraska;Lincoln;Nebraska.;Usa Center for Functional Nanomaterials;Brookhaven National Laboratory;Upton;New York.;U. U. N. R. Laboratory;Washington;D. Columbia;USA. Department of physics;Astronomy;U. Pittsburgh;Pittsburgh;Pennsylvania;U. D. O. Electrical;Computer Engineering;Usa
  • 通讯作者:
    Usa
PhysioZoo ECG: Digital electrocardiography biomarkers to assess cardiac conduction
PhysioZoo ECG:评估心脏传导的数字心电图生物标志物
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Gendelman;Shany Biton;Raphaël Derman;Eran Zvuloni;Jeremy Levy;Snir Lugassy;Alexandra Alexandrovich;J. Behar
  • 通讯作者:
    J. Behar
Generalization in medical AI: a perspective on developing scalable models
医疗人工智能的泛化:开发可扩展模型的视角
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joachim A. Behar;Jeremy Levy;L. Celi
  • 通讯作者:
    L. Celi
Preparing students to be leaders of the quantum information revolution
培养学生成为量子信息革命的领导者
  • DOI:
    10.1063/pt.6.5.20210927a
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Chandralekha Singh;Abraham Asfaw;Jeremy Levy
  • 通讯作者:
    Jeremy Levy

Jeremy Levy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Levy', 18)}}的其他基金

Stereoscopic Insight into Dilute Superconductivity of Perovskite Semiconductors
钙钛矿半导体稀超导性的立体洞察
  • 批准号:
    2225888
  • 财政年份:
    2022
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
Simulation of Multi-Component Fermionic Quantum Matter Using Oxide Nanoelectronics
使用氧化物纳米电子学模拟多组分费米子量子物质
  • 批准号:
    1913034
  • 财政年份:
    2019
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Spatially Resolved Probes of Magnetism at Oxide Interfaces
NSF/DMR-BSF:氧化物界面磁性空间分辨探针
  • 批准号:
    1609519
  • 财政年份:
    2016
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
Single-Electron Mediated Charge, Spin and Lattice Interactions in Oxide Nanostructures
氧化物纳米结构中单电子介导的电荷、自旋和晶格相互作用
  • 批准号:
    1104191
  • 财政年份:
    2011
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
EAGER: Creation and Manipulation of Quantum States in Oxide Nanostructures with a Low-Temperature Atomic-Force Microscope
EAGER:使用低温原子力显微镜在氧化物纳米结构中创建和操纵量子态
  • 批准号:
    0948671
  • 财政年份:
    2009
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
GOALI: GHz-THz Dynamics of Nanostructured Ferroelectric Thin Films
GOALI:纳米结构铁电薄膜的 GHz-THz 动力学
  • 批准号:
    0704022
  • 财政年份:
    2007
  • 资助金额:
    $ 170万
  • 项目类别:
    Continuing Grant
Materials World Network: Engineering the Spintronic Properties of Semiconductor Quantum Dots
材料世界网络:设计半导体量子点的自旋电子特性
  • 批准号:
    0602846
  • 财政年份:
    2006
  • 资助金额:
    $ 170万
  • 项目类别:
    Continuing Grant
Collaborative Research: FRG: Local Dynamic Origins of Relaxor Ferroelectricity
合作研究:FRG:弛豫铁电的局部动态起源
  • 批准号:
    0333192
  • 财政年份:
    2003
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
Development of a Cryogenic Femtosecond Aptureless Near-Field Scanning Optical Microscope for Nanostructure Research
开发用于纳米结构研究的低温飞秒无孔近场扫描光学显微镜
  • 批准号:
    9802784
  • 财政年份:
    1998
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
CAREER: Atomic-Scale Optical Microscopy of Ferroelectric, Quantum Paraelectric and Ferromagnetic Films
职业:铁电、量子顺电和铁磁薄膜的原子尺度光学显微镜
  • 批准号:
    9701725
  • 财政年份:
    1997
  • 资助金额:
    $ 170万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向智能网卡的可扩展FPGA包分类技术研究
  • 批准号:
    62372123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向高并发软件的可扩展建模与分析技术研究
  • 批准号:
    62302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
包含时空维度的可扩展光MIMO解调芯片与均衡器
  • 批准号:
    62335019
  • 批准年份:
    2023
  • 资助金额:
    225.00 万元
  • 项目类别:
    重点项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Scalable Metasurface Array for mmWave Communication and Sensing
合作研究:NeTS:Medium:用于毫米波通信和传感的可扩展超表面阵列
  • 批准号:
    2312715
  • 财政年份:
    2023
  • 资助金额:
    $ 170万
  • 项目类别:
    Continuing Grant
Collaborative Research: NeTS: Medium: Scalable Metasurface Array for mmWave Communication and Sensing
合作研究:NeTS:Medium:用于毫米波通信和传感的可扩展超表面阵列
  • 批准号:
    2312716
  • 财政年份:
    2023
  • 资助金额:
    $ 170万
  • 项目类别:
    Continuing Grant
EAGER: Urban Sensing of Pedestrians through Integrated, Cost-Effective, and Scalable Audio Sensor Networks
EAGER:通过集成、经济高效且可扩展的音频传感器网络实现城市行人感知
  • 批准号:
    2203408
  • 财政年份:
    2022
  • 资助金额:
    $ 170万
  • 项目类别:
    Standard Grant
CAREER: Scalable Remote Sensing Computational Framework for Near-real-time Crop Characterization
职业:用于近实时作物表征的可扩展遥感计算框架
  • 批准号:
    2048068
  • 财政年份:
    2021
  • 资助金额:
    $ 170万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了