K-Theory, Group C*-Algebras, Large Scale Geometry, and Topology

K 理论、C* 群代数、大尺度几何和拓扑

基本信息

  • 批准号:
    9800765
  • 负责人:
  • 金额:
    $ 28.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2001-09-30
  • 项目状态:
    已结题

项目摘要

Dear Joe, John and I worked up the following paragraphs summarizing our grant proposal. Let me know if you find them unsatisfactory. Yours, Nigel ------------------------------------------------------------------ The large scale geometry of groups and spaces plays a determining role in the calculation of invariants in C*-algebra theory and topology. The investigators aim to explore the effect of the geometry and topology of group boundaries (defined using large scale geometry) on the harmonic analysis of groups and the determination of their C*-algebra K-theory. The Baum-Connes conjecture proposes a means of calculating the K-theory of reduced group C*-algebras which blends group homology with the representation theory of finite subgroups. The conjecture, if true, would have a number of implications in geometry and topology, and a fascinating circle of ideas is coming into view which links the Baum-Connes conjecture to aspects of the harmonic analysis of groups and the geometry of group actions on boundary spaces. The investigators will attempt to clarify these relations. A long term goal is to prove the Baum-Connes conjecture, and more importantly to understand better its meaning, for classes such as the hyperbolic groups of Gromov. More immediate objectives include clarifying the relationships between existing proofs of partial forms of the conjecture for these groups, and developing further the connections between C*-algebra K-theory, manifold theory, and controlled topology. Although the tools used to investigate it are rather elaborate, the idea behind large scale geometry is very simple: ignore the local, small scale fluctuations in a quantity and concentrate on its large scale, or long term, behaviour. By doing so, trends or qualities may become apparent which are obscured by inconsequential, small scale fluctations. The investigators have developed tools to distinguish between different sorts of multi-dimensi onal, large scale behaviour in geometry. Somewhat surprisingly, aside from their intrinsic interest, their tools have found application in ordinary, small scale geometry.
亲爱的乔,约翰和我编写了以下段落,总结了我们的拨款提案。 如果您发现它们不满意,请告诉我。 您的,奈杰尔 ---------------------------------------------------------- ------------------- 群和空间的大规模几何在 C* 代数理论和拓扑中的不变量计算中起着决定性作用。研究人员旨在探索群边界的几何和拓扑(使用大尺度几何定义)对群调和分析及其 C* 代数 K 理论的确定的影响。 Baum-Connes 猜想提出了一种计算约化群 C* 代数 K 理论的方法,它将群同调性与有限子群的表示论相结合。 如果这个猜想成立,将会对几何和拓扑产生许多影响,并且一个令人着迷的思想圈正在进入人们的视野,它将鲍姆-康尼斯猜想与群的调和分析和边界上的群作用的几何学联系起来。空间。 调查人员将试图澄清这些关系。 长期目标是证明鲍姆-康尼斯猜想,更重要的是更好地理解其含义,例如格罗莫夫的双曲群。 更直接的目标包括澄清这些群猜想的部分形式的现有证明之间的关系,并进一步发展 C* 代数 K 理论、流形理论和受控拓扑之间的联系。 尽管用于研究它的工具相当复杂,但大规模几何背后的想法非常简单:忽略数量的局部小规模波动,而专注于其大规模或长期行为。 通过这样做,趋势或品质可能会变得明显,而这些趋势或品质会被无关紧要的小规模波动所掩盖。 研究人员开发了一些工具来区分几何中不同类型的多维、大规模行为。 有点令人惊讶的是,除了他们的内在兴趣之外,他们的工具还应用于普通的小规模几何体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nigel Higson其他文献

Nigel Higson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nigel Higson', 18)}}的其他基金

FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
  • 批准号:
    1952669
  • 财政年份:
    2020
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
Group Representations and the Baum-Connes Assembly Map
团体代表和 Baum-Connes 装配图
  • 批准号:
    1101382
  • 财政年份:
    2011
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
Conference Support: Sixth East Coast Operator Algebras Symposium, October 11-12, 2008
会议支持:第六届东海岸算子代数研讨会,2008 年 10 月 11-12 日
  • 批准号:
    0803490
  • 财政年份:
    2008
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
Index Theory and the Baum-Connes Conjecture
指数理论和鲍姆-康纳斯猜想
  • 批准号:
    0607879
  • 财政年份:
    2006
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
Immersive Experience for Mathematics Undergraduates: Mathematics Advanced Study Semesters Program at Penn State
数学本科生的沉浸式体验:宾夕法尼亚州立大学数学高级研究学期项目
  • 批准号:
    0436183
  • 财政年份:
    2004
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
Geometry of Groups & Functional Analysis
群的几何
  • 批准号:
    0100464
  • 财政年份:
    2001
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: Geometric and Analytic Properties of Discrete Groups--A Focused Research Group on the Novikov Conjecture and the Baum-Connes Conjecture
协作研究:离散群的几何性质和解析性质--诺维科夫猜想和鲍姆-康纳斯猜想重点研究组
  • 批准号:
    0074062
  • 财政年份:
    2000
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
A Vertically Integrated Program for Training in the Mathematical Sciences
数学科学培训的垂直整合计划
  • 批准号:
    9810759
  • 财政年份:
    1999
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: K-Theory of C*-Algebras, Group Representations, and Coarse Geometry
数学科学:C* 代数的 K 理论、群表示和粗略几何
  • 批准号:
    9500977
  • 财政年份:
    1995
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Index Theory and K-Theory of Group C*-Algebras
数学科学:C* 族代数的指数理论和 K 理论
  • 批准号:
    9201290
  • 财政年份:
    1992
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant

相似国自然基金

信息交流对异质性团体感知觉决策的影响研究:基于认知计算的动态优势表征
  • 批准号:
    32300910
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于分子互作研究多酚结构差异对面团体系面筋蛋白网络形成的调控机制
  • 批准号:
    32301998
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
团体创新中的观念生成路径及其神经基础研究
  • 批准号:
    32300900
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向小团体的多模态连续情感识别研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
位置社交网络中天际线团体搜索技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
  • 批准号:
    2154637
  • 财政年份:
    2022
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
Homotopy Algebraic Approach to the Exact Renormalization Group Analysis in Quantum Field Theory
量子场论中精确重正化群分析的同伦代数方法
  • 批准号:
    22K14038
  • 财政年份:
    2022
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Representation theory of wild cyclotomic quiver Hecke algebras and the symmetric group
狂野分圆箭袋Hecke代数和对称群的表示论
  • 批准号:
    21K03163
  • 财政年份:
    2021
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the class group in the class field theory for curves over local fields
局部域曲线类域论中的类群研究
  • 批准号:
    20K03536
  • 财政年份:
    2020
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of operator algebras and functional analytic group theory
算子代数理论和泛函解析群论
  • 批准号:
    20H01806
  • 财政年份:
    2020
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了