Group Representations and the Baum-Connes Assembly Map
团体代表和 Baum-Connes 装配图
基本信息
- 批准号:1101382
- 负责人:
- 金额:$ 29.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will explore new connections between the emerging area of noncommutative geometry and the representation theory of Lie groups. The first part of the project was inspired initially by explorations in mathematical physics. It revives a proposal of George Mackey to correspond representations of a semisimple Lie group with those of its Cartan motion group, but it does so in the light of more recent developments in noncommutative geometry. The second component of the project seeks to develop links between the index-theoretic approach to representation theory incorporated into the Baum-Connes theory and the geometric representation theory of Beilinson and Bernstein. A third segment of the project aims to investigate more deeply the connection between the Baum-Connes theory and the Langlands classification of irreducible representations. The goal of the final major portion of the project is to frame the "quantization commutes with reduction" phenomenon in symplectic geometry within noncommutative geometry. It is expected that this will lead to a clearer understanding of the range of the phenomenon. Although the project initially involves the relatively well-understood representation theory of compact groups, a long-term aim of the project is to apply insights gained more broadly within representation theory, guided by the outlooks of the individual components.Group representation theory is a recurring theme in modern mathematics. Its origins lie within algebra, but the subject has important ties to geometry, to differential equations, and to many other mathematical areas. This project focuses on the groups that capture mathematically the concept of continuous symmetry (such as the continuous, rotational symmetry of a circle, which may be rotated about itself by any angle, as opposed to the discrete symmetry of a square, which may be rotated about itself only by quarter turns). These groups are basic to the mathematical expression of the laws of physics, thanks to the continuous symmetries (rotations, translations, and others) intrinsic to physical space and time. The fundamental observable quantities in physical science such as energy and momentum are paired with these symmetries. For example, the law of conservation of energy is a restatement of the expectation that the laws of physics remain unchanged as time passes. In quantum theory, the symmetries of space and time imply that fundamental particles correspond to so-called irreducible unitary group representations, and it becomes a matter of interest and importance to determine these representations. Within mathematics, the same representations have been found to be intimately linked to the theory of special functions, to number theory, and to differential equations, among other areas. It is the common objective of the various components of this project to bring new mathematical techniques to bear on representation theory. The long-term goal is to conceptualize and deepen our understanding of an area that has been central to mathematics and its applications for more than a hundred years.
该项目将探索非交换几何新兴领域与李群表示论之间的新联系。 该项目的第一部分最初的灵感来自于数学物理学的探索。它恢复了乔治·麦基的提议,将半单李群的表示与其嘉当运动群的表示相对应,但它是根据非交换几何的最新发展来实现的。该项目的第二个组成部分旨在建立鲍姆-康尼斯理论中的表示理论的指数理论方法与贝林森和伯恩斯坦的几何表示理论之间的联系。该项目的第三部分旨在更深入地研究鲍姆-康尼斯理论和不可约表示的朗兰兹分类之间的联系。该项目最后主要部分的目标是在非交换几何中构建辛几何中的“量化交换与减少”现象。 预计这将导致人们对该现象的范围有更清晰的了解。尽管该项目最初涉及相对容易理解的紧群表示论,但该项目的长期目标是在各个组成部分的观点指导下,更广泛地应用在表示论中获得的见解。群表示论是一个反复出现的问题现代数学的主题。 它起源于代数,但该学科与几何、微分方程和许多其他数学领域有着重要的联系。 该项目重点关注在数学上捕获连续对称概念的组(例如圆的连续旋转对称性,它可以围绕自身旋转任何角度,而不是正方形的离散对称性,它可以旋转)其自身仅旋转四分之一圈)。由于物理空间和时间固有的连续对称性(旋转、平移等),这些群是物理定律数学表达的基础。物理科学中的基本可观测量(例如能量和动量)与这些对称性配对。例如,能量守恒定律是对物理定律随着时间的推移保持不变的期望的重申。在量子理论中,空间和时间的对称性意味着基本粒子对应于所谓的不可约酉群表示,确定这些表示成为一个有趣且重要的问题。在数学中,人们发现相同的表示与特殊函数理论、数论和微分方程等领域密切相关。该项目各个组成部分的共同目标是将新的数学技术应用于表示论。长期目标是概念化并加深我们对一百多年来一直是数学及其应用核心的领域的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Higson其他文献
Nigel Higson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Higson', 18)}}的其他基金
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
- 批准号:
1952669 - 财政年份:2020
- 资助金额:
$ 29.1万 - 项目类别:
Standard Grant
Conference Support: Sixth East Coast Operator Algebras Symposium, October 11-12, 2008
会议支持:第六届东海岸算子代数研讨会,2008 年 10 月 11-12 日
- 批准号:
0803490 - 财政年份:2008
- 资助金额:
$ 29.1万 - 项目类别:
Standard Grant
Index Theory and the Baum-Connes Conjecture
指数理论和鲍姆-康纳斯猜想
- 批准号:
0607879 - 财政年份:2006
- 资助金额:
$ 29.1万 - 项目类别:
Continuing Grant
Immersive Experience for Mathematics Undergraduates: Mathematics Advanced Study Semesters Program at Penn State
数学本科生的沉浸式体验:宾夕法尼亚州立大学数学高级研究学期项目
- 批准号:
0436183 - 财政年份:2004
- 资助金额:
$ 29.1万 - 项目类别:
Standard Grant
Collaborative Research: Geometric and Analytic Properties of Discrete Groups--A Focused Research Group on the Novikov Conjecture and the Baum-Connes Conjecture
协作研究:离散群的几何性质和解析性质--诺维科夫猜想和鲍姆-康纳斯猜想重点研究组
- 批准号:
0074062 - 财政年份:2000
- 资助金额:
$ 29.1万 - 项目类别:
Standard Grant
A Vertically Integrated Program for Training in the Mathematical Sciences
数学科学培训的垂直整合计划
- 批准号:
9810759 - 财政年份:1999
- 资助金额:
$ 29.1万 - 项目类别:
Continuing Grant
K-Theory, Group C*-Algebras, Large Scale Geometry, and Topology
K 理论、C* 群代数、大尺度几何和拓扑
- 批准号:
9800765 - 财政年份:1998
- 资助金额:
$ 29.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: K-Theory of C*-Algebras, Group Representations, and Coarse Geometry
数学科学:C* 代数的 K 理论、群表示和粗略几何
- 批准号:
9500977 - 财政年份:1995
- 资助金额:
$ 29.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Index Theory and K-Theory of Group C*-Algebras
数学科学:C* 族代数的指数理论和 K 理论
- 批准号:
9201290 - 财政年份:1992
- 资助金额:
$ 29.1万 - 项目类别:
Continuing Grant
相似国自然基金
中国人群环境健康风险价值评估:基于陈述偏好的研究
- 批准号:72304015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颞叶癫痫致痫网络损害陈述性记忆的电生理机制研究
- 批准号:82271495
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
学习与记忆终生发展的机制与干预
- 批准号:31730038
- 批准年份:2017
- 资助金额:274.0 万元
- 项目类别:重点项目
嗅周皮质神经元放电模式在tEBC追踪记忆形成中的作用机制探究
- 批准号:31671103
- 批准年份:2016
- 资助金额:25.0 万元
- 项目类别:面上项目
细颗粒度维吾尔语文本意见挖掘方法的研究
- 批准号:61262064
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
- 批准号:
MR/Y033884/1 - 财政年份:2025
- 资助金额:
$ 29.1万 - 项目类别:
Fellowship
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
$ 29.1万 - 项目类别:
Continuing Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 29.1万 - 项目类别:
Standard Grant
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
- 批准号:
2337451 - 财政年份:2024
- 资助金额:
$ 29.1万 - 项目类别:
Continuing Grant
Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
- 批准号:
24K00093 - 财政年份:2024
- 资助金额:
$ 29.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)