Bifurcation Theory
分岔理论
基本信息
- 批准号:7800415
- 负责人:
- 金额:$ 7.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1978
- 资助国家:美国
- 起止时间:1978-06-15 至 1983-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Sattinger其他文献
David Sattinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Sattinger', 18)}}的其他基金
Solvable Models of Nonlinear Dispersive Waves
非线性色散波的可解模型
- 批准号:
9996396 - 财政年份:1999
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Solvable Models of Nonlinear Dispersive Waves
非线性色散波的可解模型
- 批准号:
9996382 - 财政年份:1999
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Solvable Models of Nonlinear Dispersive Waves
非线性色散波的可解模型
- 批准号:
9971249 - 财政年份:1999
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Classical And Quantum Integrable Systems
数学科学:经典和量子可积系统
- 批准号:
9501233 - 财政年份:1995
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Flat Connections and Deformation Problems
数学科学:平面连接和变形问题
- 批准号:
9123844 - 财政年份:1992
- 资助金额:
$ 7.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry of Integrable Systems
数学科学:可积系统的几何
- 批准号:
8901607 - 财政年份:1989
- 资助金额:
$ 7.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Methods in Nonlinear Problems
数学科学:非线性问题的代数方法
- 批准号:
8702758 - 财政年份:1987
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Group Theoretic Methods in Physics and Applied Mathematics
数学科学:物理和应用数学中的群论方法
- 批准号:
8501777 - 财政年份:1985
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Group Theoretic Methods in Physics And Applied Mathematics
数学科学:物理学和应用数学中的群论方法
- 批准号:
8301291 - 财政年份:1983
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
相似国自然基金
后过渡态分叉理论研究新策略的开发与应用
- 批准号:22303027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
边界层转捩诱导动态失稳的分叉理论分析与数值模拟研究
- 批准号:12272400
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
边界层转捩诱导动态失稳的分叉理论分析与数值模拟研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
微分动力系统与变分方法天元数学讲习班
- 批准号:12226412
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
全固态1.5微米腔倒空激光器脉冲频率分叉的理论和实验研究
- 批准号:62105334
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
- 批准号:
RGPIN-2020-05009 - 财政年份:2022
- 资助金额:
$ 7.2万 - 项目类别:
Discovery Grants Program - Individual
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2022
- 资助金额:
$ 7.2万 - 项目类别:
Discovery Grants Program - Individual
Global analysis of GKZ systems and new development of intersection theory
GKZ系统全局分析及交集理论新进展
- 批准号:
22K13930 - 财政年份:2022
- 资助金额:
$ 7.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Bifurcation theory and applications in mathematical biology
分岔理论及其在数学生物学中的应用
- 批准号:
RGPIN-2018-06520 - 财政年份:2022
- 资助金额:
$ 7.2万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory and applications in mathematical biology
分岔理论及其在数学生物学中的应用
- 批准号:
RGPIN-2018-06520 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
Discovery Grants Program - Individual