Mathematical Sciences: Flat Connections and Deformation Problems

数学科学:平面连接和变形问题

基本信息

  • 批准号:
    9123844
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1992
  • 资助国家:
    美国
  • 起止时间:
    1992-07-01 至 1995-12-31
  • 项目状态:
    已结题

项目摘要

The principal investigator will study isomonodromy deformation problems and their application to solve asymptotic connection formulae and to carry out a related study on the factorization problem associated with Gelfand-Dikii flows. These fundamental properties of integrable systems have been established for the 2 x 2 case, but have not been resolved for the general n x n case. A geometrical-analytical understanding is critical for further development. Integrable systems and inverse scattering problems play a fundamental role in establishing links between fundamental physics and the way in which mathematical models are used to describe it.
主要研究者将研究等单性变形问题及其在求解渐近连接公式中的应用,并对与 Gelfand-Dikii 流相关的因式分解问题进行相关研究。 可积系统的这些基本属性已针对 2 x 2 情况建立,但对于一般 n x n 情况尚未解决。 几何分析的理解对于进一步的发展至关重要。 可积系统和逆散射问题在建立基础物理与数学模型描述方式之间的联系方面发挥着重要作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Sattinger其他文献

David Sattinger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Sattinger', 18)}}的其他基金

Solvable Models of Nonlinear Dispersive Waves
非线性色散波的可解模型
  • 批准号:
    9996396
  • 财政年份:
    1999
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Solvable Models of Nonlinear Dispersive Waves
非线性色散波的可解模型
  • 批准号:
    9996382
  • 财政年份:
    1999
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Solvable Models of Nonlinear Dispersive Waves
非线性色散波的可解模型
  • 批准号:
    9971249
  • 财政年份:
    1999
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Classical And Quantum Integrable Systems
数学科学:经典和量子可积系统
  • 批准号:
    9501233
  • 财政年份:
    1995
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometry of Integrable Systems
数学科学:可积系统的几何
  • 批准号:
    8901607
  • 财政年份:
    1989
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Methods in Nonlinear Problems
数学科学:非线性问题的代数方法
  • 批准号:
    8702758
  • 财政年份:
    1987
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Group Theoretic Methods in Physics and Applied Mathematics
数学科学:物理和应用数学中的群论方法
  • 批准号:
    8501777
  • 财政年份:
    1985
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Group Theoretic Methods in Physics And Applied Mathematics
数学科学:物理学和应用数学中的群论方法
  • 批准号:
    8301291
  • 财政年份:
    1983
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Bifurcation Theory
分岔理论
  • 批准号:
    7800415
  • 财政年份:
    1978
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Bifurcation Theory
分岔理论
  • 批准号:
    7308535
  • 财政年份:
    1973
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant

相似国自然基金

国际应用系统分析研究学会2023暑期青年科学家项目
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    4.5 万元
  • 项目类别:
基于可解释机器学习的科学知识角色转变预测研究
  • 批准号:
    72304108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向论文引用与科研合作的"科学学"规律中的国别特征研究
  • 批准号:
    72374173
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
战略与管理研究类:电气科学与工程学科研究方向与关键词优化
  • 批准号:
    52342702
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
X9R高温多层陶瓷电容器(MLCC)中关键科学与技术难题研究
  • 批准号:
    52302276
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Research Grant
特定行為研修「在宅・慢性期領域」における実装科学を活用した地域の取組の推進と評価
在特定行为培训“家庭/慢性阶段区域”中利用实施科学来促进和评估当地举措
  • 批准号:
    24K14143
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
新規向精神薬の毒性形成機構の神経科学的解明
神经科学阐明新型精神药物毒性形成机制
  • 批准号:
    24K13542
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
機能性表示食品制度において届出される機能性の科学的根拠の質向上プログラムの開発
制定一项计划,以提高功能食品声明系统下报告的功能科学依据的质量
  • 批准号:
    24K14658
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
時空間メタマテリアル複合材料のインバース・デザインに関する計算科学的研究
时空超材料复合材料逆向设计的计算科学研究
  • 批准号:
    24K14976
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了