流体流动与传热的修正特征投影方法研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    11226306
  • 项目类别:
    数学天元基金项目
  • 资助金额:
    3.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    A0504.微分方程数值解
  • 结题年份:
    2013
  • 批准年份:
    2012
  • 项目状态:
    已结题
  • 起止时间:
    2013-01-01 至2013-12-31

项目摘要

In this progrem,we studied the modified characteristics projection finite element method of the incompressible viscous flow and heat tranfer. Using projection method, the unsteady Navier-Stokes equation or fluid thermodynamic equation is decomposed into several parabolic and elliptic equations, time derivative and convective terms of the parabolic equation are discretized by the characteristics method, while the spatial is discretized by the finite element method or finite volume method. We will give the stability analysis and error estimate, numerical experiments are also given, and the numerical results will be compared with the existing numerical results. In this way, we will give several stability, robustness and high convergence precision numerical methods. In order to study the long time behavior of the solutions, behavior and the mechanism of development of turbulence flow and provide a reliable theoretical basis and algorithm tools for the numerical simulation of turbulent flow, we will give the numerical results of the high Reynolds number flow in long time.Thus, we will understand the nature of nonlinear flow more clearly, provide new research tools for the non-linear science, and give new tools and theories for the computational fluid dynamics in the engineering.
针对不可压粘性流动与导热问题,我们研究基于投影方法的修正特征有限元方法。利用投影方法,把非定常Navier-Stokes方程或流体热动力学方程组分解为几个抛物和椭圆方程,对抛物方程利用特征方法对时间导数项和对流项进行离散,而空间离散利用已有的空间离散方法——有限元方法或有限体积方法。我们将给出数值格式的稳定性分析和误差估计,给出数值计算实验,并把数值实验结果和已有的结果进行比较分析,从而给出若干稳定性好、适应性强、收敛的高精度格式。对大雷诺数流动进行长时间的数值模拟,以研究解的渐进性行为,为研究湍流发展的行为和机理以及数值模拟湍流提供可靠的理论依据和算法工具。从而,也更清楚地认识非线性流动的本质,为非线性科学研究提供新的研究工具,也能为计算流体力学在工程中的应用提供新的工具和理论。

结项摘要

在本项目中,针对不可压粘性流动与导热问题,我们研究基于投影方法的修正特征有限元方法。我们研究了求解Navier-Stokes方程的修正特征混合有限元方法,给出了求解Navier-Stokes方程的修正特征有限元方法的无条件稳定性和最优误差估计。研究了流体热动力学方程组的投影Lagrange-Galerkin有限元方法,给出了无条件稳定性和最优的误差估计。研究了求解Navier-Stokes方程的修正特征gauge-Uzawa算法。我们结合修正特征方法和gauge-Uzawa方法,得到了求解Navier-Stokes方程的修正特征gauge-Uzawa算法。在本项目中,我们也研究了流体热动力学方程组的修正特征gauge-Uzawa有限元方法。给出了误差估计和数值算例,并把数值结果和文献中的数值结果进行比较,表明算法的优越性和良好的稳定性。从而,也更清楚地认识了非线性流动的本质,为非线性科学研究提供新的研究工具,也能为计算流体力学在工程中的应用提供新的工具和理论。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

司智勇的其他基金

非定常Ginzburg-Landau方程的无条件稳定的保结构数值方法
  • 批准号:
    12126318
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
自由流和多孔介质流耦合问题的投影方法研究
  • 批准号:
    11301156
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码