随机过程论中若干问题的研究
项目介绍
AI项目解读
基本信息
- 批准号:19971072
- 项目类别:面上项目
- 资助金额:8.5万
- 负责人:
- 依托单位:
- 学科分类:A0210.随机分析与随机过程
- 结题年份:2002
- 批准年份:1999
- 项目状态:已结题
- 起止时间:2000-01-01 至2002-12-31
- 项目参与者:王汉兴; 汪荣明; 陈彬;
- 关键词:
项目摘要
In this project, the following problems have been researched. (1) The limit theorems of vector-valued semimartingales were given. In this part, a new class of stochastic processes (Φ’-valued martingale measures) was introduced and the limit.theorems of Hilbert-valued semimartingales and Φ’-valued martingale measures and the stability of stochastic differentical equations on Hilbert space and on Φ’ were.studied. (2) Stochastic differentical equations with jumps were researched. In this part, we gave the stability, the existence of Lyapunov exponent and invariant measures and approximation of Lyapunov exponent and invariant measure of stochastic differentical equations with jumps. Random dynamical systems with jumps were also stuied in this.part. (3) Integration of integrable systems with stochastic perturbation terms were stuied. We gave the integration of stochastic KdV equation, stochastic mKdV equation and stochastic Burgers equation. (4) Branching models in random environments were researched. In this part, we mainly studied PSD branching models. We gave the conditions for the existence of stationary distribution and the calculation of stationary distribution. Moreover, we also give some applications of branching.models in random network. (6) We studied the Morkov selection and representation of.set-valued Markov processes, the regularity of the paths of set-valued (super, sub) martingales with continuous time. Moreover, the Doob-Meyer decomposition theorem.and the localization of set-valued supermartingales were research in this project. In this project, we have had that 10 papers have been published (there are 2 SCI in them) , 7 papers have been accepted (there are 4 SCI in them) and 17 papers are being gone over manuscripts.
本项目主要包括:随机过程极限定理、向量值半鞅理论以及随机分析在金融经济学中应用的研究:平稳环境、马氏环境中的PSD分枝过程的研究、马氏环境中反射布朗运动及相关随机纭⒁毫髂P偷难芯浚航⒓德硎瞎毯徒调钡囊话憷砺邸U庑┪侍舛际撬婊搪壑械娜鹊愫湍训阄侍猓云渖钊胙芯吭诶砺凵虾陀τ蒙隙季哂兄匾庖濉
结项摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
分数Brown运动驱动带Markov切换的随机微分方程解的密度存在性
- DOI:--
- 发表时间:2015
- 期刊:中国科学: 数学
- 影响因子:--
- 作者:孙晓斌;谢颖超
- 通讯作者:谢颖超
Existence of Density Functions for the Running Maximum of a Levy-Ito Diffusion
Levy-Ito 扩散的运行最大值的密度函数的存在性
- DOI:10.1007/s11118-017-9625-y
- 发表时间:2018
- 期刊:Potential Analysis
- 影响因子:1.1
- 作者:宋玉林;谢颖超
- 通讯作者:谢颖超
一类非时齐Lipschitz条件下带跳
- DOI:--
- 发表时间:--
- 期刊:应用数学学报 29(4). 688-698,2006.
- 影响因子:--
- 作者:孙信秀;谢颖超
- 通讯作者:谢颖超
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}

内容获取失败,请点击重试

查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图

请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
谢颖超的其他基金
非局部狄氏型和随机偏微分方程若干问题研究
- 批准号:11931004
- 批准年份:2019
- 资助金额:260 万元
- 项目类别:重点项目
Lévy噪声驱动的随机偏微分方程的若干问题
- 批准号:11771187
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
Levy过程驱动的随机偏微分方程的遍历性及相关问题
- 批准号:11271169
- 批准年份:2012
- 资助金额:65.0 万元
- 项目类别:面上项目
随机偏微分方程中一些前沿问题的研究
- 批准号:10971180
- 批准年份:2009
- 资助金额:26.0 万元
- 项目类别:面上项目
随机分析中若干问题的研究
- 批准号:10671168
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:面上项目
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}