Regularization and approximation: statistical inference, model selection, and large data
正则化和近似:统计推断、模型选择和大数据
基本信息
- 批准号:RGPIN-2021-02618
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Extracting information from large data requires computational tractability and statistical efficiency. These are typically achieved through approximation or regularization, either of which heuristically balances fidelity to the data with scientific goals like parsimony, smoothness, sparsity, or interpretability. My long-term objective is to enable fundamental scientific progress by developing and characterizing the connections between computational approximation and statistical regularization, thereby facilitating improved inference. In particular, my research program investigates how statistically optimal decisions depend on the amount of regularization or approximation and their structures, both of which must be tied to the scientific questions at stake and calibrated according to the data. Research in computer science has focused on improving algorithms to enable computation with a minimum of approximation. Meanwhile, statisticians have developed regularization techniques in order to take advantage of simple structures that, if representative of the truth, will improve inference and prediction. My work seeks to bridge the gap between these perspectives. My research program aims to deepen the theoretical links between approximation algorithms and inference for estimation and prediction by: (1) developing and justifying approximation techniques for dependent data; (2) enabling application through reasoned tuning parameter selection; (3) precisely characterizing the effect of approximations in nonparametric statistics; and (4) ensuring scientific applicability through synergistic development and collaboration with domain experts.
从大数据中提取信息需要计算的易处理性和统计的效率。这些通常是通过近似或正则化来实现的,这两种方法都可以启发式地平衡数据的保真度与简约性、平滑性、稀疏性或可解释性等科学目标。我的长期目标是通过开发和表征计算近似与统计正则化之间的联系来实现基础科学进步,从而促进改进的推理。特别是,我的研究项目调查统计上的最佳决策如何取决于正则化或近似的数量及其结构,这两者都必须与所涉及的科学问题联系起来并根据数据进行校准。计算机科学研究的重点是改进算法,以最小化近似值进行计算。与此同时,统计学家开发了正则化技术,以便利用简单的结构,如果这些结构代表事实,将改善推理和预测。我的工作旨在弥合这些观点之间的差距。我的研究计划旨在通过以下方式加深近似算法与估计和预测推理之间的理论联系:(1)开发并证明相关数据的近似技术; (2) 通过合理的调整参数选择来启用应用; (3) 精确表征非参数统计中的近似效应; (4) 通过与领域专家的协同开发和合作,确保科学适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
McDonald, Daniel其他文献
Development of an innovative salt-mediated pH gradient cation exchange chromatography method for the characterization of therapeutic antibodies
- DOI:
10.1016/j.jchromb.2020.122379 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:3
- 作者:
Goyon, Alexandre;McDonald, Daniel;Stella, Cinzia - 通讯作者:
Stella, Cinzia
Enhancing untargeted metabolomics using metadata-based source annotation.
- DOI:
10.1038/s41587-022-01368-1 - 发表时间:
2022-12 - 期刊:
- 影响因子:46.9
- 作者:
Gauglitz, Julia M.;West, Kiana A.;Bittremieux, Wout;Williams, Candace L.;Weldon, Kelly C.;Panitchpakdi, Morgan;Di Ottavio, Francesca;Aceves, Christine M.;Brown, Elizabeth;Sikora, Nicole C.;Jarmusch, Alan K.;Martino, Cameron;Tripathi, Anupriya;Meehan, Michael J.;Dorrestein, Kathleen;Shaffer, Justin P.;Coras, Roxana;Vargas, Fernando;Goldasich, Lindsay DeRight;Schwartz, Tara;Bryant, MacKenzie;Humphrey, Gregory;Johnson, Abigail J.;Spengler, Katharina;Belda-Ferre, Pedro;Diaz, Edgar;McDonald, Daniel;Zhu, Qiyun;Elijah, Emmanuel O.;Wang, Mingxun;Marotz, Clarisse;Sprecher, Kate E.;Vargas-Robles, Daniela;Withrow, Dana;Ackermann, Gail;Herrera, Lourdes;Bradford, Barry J.;Marques, Lucas Maciel Mauriz;Amaral, Juliano Geraldo;Silva, Rodrigo Moreira;Veras, Flavio Protasio;Cunha, Thiago Mattar;Oliveira, Rene Donizeti Ribeiro;Louzada-Junior, Paulo;Mills, Robert H.;Piotrowski, Paulina K.;Servetas, Stephanie L.;Da Silva, Sandra M.;Jones, Christina M.;Lin, Nancy J.;Lippa, Katrice A.;Jackson, Scott A.;Daouk, Rima Kaddurah;Galasko, Douglas;Dulai, Parambir S.;Kalashnikova, Tatyana I.;Wittenberg, Curt;Terkeltaub, Robert;Doty, Megan M.;Kim, Jae H.;Rhee, Kyung E.;Beauchamp-Walters, Julia;Wright, Kenneth P., Jr.;Dominguez-Bello, Maria Gloria;Manary, Mark;Oliveira, Michelli F.;Boland, Brigid S.;Lopes, Norberto Peporine;Guma, Monica;Swafford, Austin D.;Dutton, Rachel J.;Knight, Rob;Dorrestein, Pieter C. - 通讯作者:
Dorrestein, Pieter C.
QIIME allows analysis of high-throughput community sequencing data.
- DOI:
10.1038/nmeth.f.303 - 发表时间:
2010-05 - 期刊:
- 影响因子:48
- 作者:
Caporaso, J. Gregory;Kuczynski, Justin;Stombaugh, Jesse;Bittinger, Kyle;Bushman, Frederic D.;Costello, Elizabeth K.;Fierer, Noah;Pena, Antonio Gonzalez;Goodrich, Julia K.;Gordon, Jeffrey I.;Huttley, Gavin A.;Kelley, Scott T.;Knights, Dan;Koenig, Jeremy E.;Ley, Ruth E.;Lozupone, Catherine A.;McDonald, Daniel;Muegge, Brian D.;Pirrung, Meg;Reeder, Jens;Sevinsky, Joel R.;Tumbaugh, Peter J.;Walters, William A.;Widmann, Jeremy;Yatsunenko, Tanya;Zaneveld, Jesse;Knight, Rob - 通讯作者:
Knight, Rob
A framework for human microbiome research.
- DOI:
10.1038/nature11209 - 发表时间:
2012-06-13 - 期刊:
- 影响因子:64.8
- 作者:
Methe, Barbara A.;Nelson, Karen E.;Pop, Mihai;Creasy, Heather H.;Giglio, Michelle G.;Huttenhower, Curtis;Gevers, Dirk;Petrosino, Joseph F.;Abubucker, Sahar;Badger, Jonathan H.;Chinwalla, Asif T.;Earl, Ashlee M.;FitzGerald, Michael G.;Fulton, Robert S.;Hallsworth-Pepin, Kymberlie;Lobos, Elizabeth A.;Madupu, Ramana;Magrini, Vincent;Martin, John C.;Mitreva, Makedonka;Muzny, Donna M.;Sodergren, Erica J.;Versalovic, James;Wollam, Aye M.;Worley, Kim C.;Wortman, Jennifer R.;Young, Sarah K.;Zeng, Qiandong;Aagaard, Kjersti M.;Abolude, Olukemi O.;Allen-Vercoe, Emma;Alm, Eric J.;Alvarado, Lucia;Andersen, Gary L.;Anderson, Scott;Appelbaum, Elizabeth;Arachchi, Harindra M.;Armitage, Gary;Arze, Cesar A.;Ayvaz, Tulin;Baker, Carl C.;Begg, Lisa;Belachew, Tsegahiwot;Bhonagiri, Veena;Bihan, Monika;Blaser, Martin J.;Bloom, Toby;Bonazzi, Vivien R.;Brooks, Paul;Buck, GregoryA.;Buhay, Christian J.;Busam, Dana A.;Campbell, Joseph L.;Canon, Shane R.;Cantarel, Brandi L.;Chain, Patrick S.;Chen, I-Min A.;Chen, Lei;Chhibba, Shaila;Chu, Ken;Ciulla, Dawn M.;Clemente, Jose C.;Clifton, Sandra W.;Conlan, Sean;Crabtree, Jonathan;Cutting, Mary A.;Davidovics, Noam J.;Davis, Catherine C.;DeSantis, Todd Z.;Deal, Carolyn;Delehaunty, Kimberley D.;Dewhisrst, Floyd E.;Deych, Elena;Ding, Yan;Dooling, David J.;Dugan, Shannon P.;Dunne, W. Michael, Jr.;Durkin, A. Scott;Edgar, Robert C.;Erlich, Rachel L.;Farmer, Candace N.;Farrell, Ruth M.;Faust, Karoline;Feldgarden, Michael;Felix, Victor M.;Fisher, Sheila;Fodor, Anthony A.;Forney, Larry;Foster, Leslie;Di Francesco, Valentina;Friedman, Jonathan;Friedrich, Dennis C.;Fronick, Catrina C.;Fulton, Lucinda L.;Gao, Hongyu;Garcia, Nathalia;Giannoukos, Georgia;Giblin, Christina;Giovanni, Maria Y.;Goldberg, Jonathan M.;Goll, Johannes;Gonzalez, Antonio;Griggs, Allison;Gujja, Sharvari;Haas, Brian J.;Hamilton, Holli A.;Harris, Emily L.;Hepburn, Theresa A.;Herter, Brandi;Hoffmann, Diane E.;Holder, Michael E.;Howarth, Clinton;Huang, Katherine H.;Huse, Susan M.;Izard, Jacques;Jansson, Janet K.;Jiang, Huaiyang;Jordan, Catherine;Joshi, Vandita;Katancik, JamesA.;Keitel, WendyA.;Kelley, Scott T.;Kells, Cristyn;Kinder-Haake, Susan;King, Nicholas B.;Knight, Rob;Knights, Dan;Kong, Heidi H.;Koren, Omry;Koren, Sergey;Kota, Karthik C.;Kovar, Christie L.;Kyrpides, Nikos C.;La Rosa, Patricio S.;Lee, Sandra L.;Lemon, Katherine P.;Lennon, Niall;Lewis, Cecil M.;Lewis, Lora;Ley, Ruth E.;Li, Kelvin;Liolios, Konstantinos;Liu, Bo;Liu, Yue;Lo, Chien-Chi;Lozupone, Catherine A.;Lunsford, R. Dwayne;Madden, Tessa;Mahurkar, Anup A.;Mannon, Peter J.;Mardis, Elaine R.;Markowitz, Victor M.;Mavrommatis, Konstantinos;McCorrison, Jamison M.;McDonald, Daniel;McEwen, Jean;McGuire, Amy L.;McInnes, Pamela;Mehta, Teena;Mihindukulasuriya, Kathie A.;Miller, Jason R.;Minx, Patrick J.;Newsham, Irene;Nusbaum, Chad;O'Laughlin, Michelle;Orvis, Joshua;Pagani, Ioanna;Palaniappan, Krishna;Patel, Shital M.;Pearson, Matthew;Peterson, Jane;Podar, Mircea;Pohl, Craig;Pollard, Katherine S.;Priest, Margaret E.;Proctor, Lita M.;Qin, Xiang;Raes, Jeroen;Ravel, Jacques;Reid, Jeffrey G.;Rho, Mina;Rhodes, Rosamond;Riehle, Kevin P.;Rivera, Maria C.;Rodriguez-Mueller, Beltran;Rogers, Yu-Hui;Ross, Matthew C.;Russ, Carsten;Sanka, Ravi K.;Sankar, Pamela;Sathirapongsasuti, J. Fah;Schloss, Jeffery A.;Schloss, Patrick D.;Schmidt, Thomas M.;Scholz, Matthew;Schriml, Lynn;Schubert, Alyxandria M.;Segata, Nicola;Segre, Julia A.;Shannon, William D.;Sharp, Richard R.;Sharpton, Thomas J.;Shenoy, Narmada;Sheth, Nihar U.;Simone, Gina A.;Singh, Indresh;Smillie, Chris S.;Sobel, Jack D.;Sommer, Daniel D.;Spicer, Paul;Sutton, Granger G.;Sykes, Sean M.;Tabbaa, Diana G.;Thiagarajan, Mathangi;Tomlinson, Chad M.;Torralba, Manolito;Treangen, Todd J.;Truty, Rebecca M.;Vishnivetskaya, Tatiana A.;Walker, Jason;Wang, Lu;Wang, Zhengyuan;Ward, Doyle V.;Warren, Wesley;Watson, Mark A.;Wellington, Christopher;Wetterstrand, Kris A.;White, James R.;Wilczek-Boney, Katarzyna;Wu, Yuan Qing;Wylie, Kristine M.;Wylie, Todd;Yandava, Chandri;Ye, Liang;Ye, Yuzhen;Yooseph, Shibu;Youmans, Bonnie P.;Zhang, Lan;Zhou, Yanjiao;Zhu, Yiming;Zoloth, Laurie;Zucker, Jeremy D.;Birren, Bruce W.;Gibbs, Richard A.;Highlander, Sarah K.;Weinstock, George M.;Wilson, Richard K.;White, Owen - 通讯作者:
White, Owen
Microbial community resemblance methods differ in their ability to detect biologically relevant patterns.
- DOI:
10.1038/nmeth.1499 - 发表时间:
2010-10 - 期刊:
- 影响因子:48
- 作者:
Kuczynski, Justin;Liu, Zongzhi;Lozupone, Catherine;McDonald, Daniel;Fierer, Noah;Knight, Rob - 通讯作者:
Knight, Rob
McDonald, Daniel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('McDonald, Daniel', 18)}}的其他基金
Regularization and approximation: statistical inference, model selection, and large data
正则化和近似:统计推断、模型选择和大数据
- 批准号:
RGPIN-2021-02618 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Research in Ergodic Theory and Dynamical Systems
遍历理论和动力系统研究
- 批准号:
410698-2011 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Postgraduate Scholarships - Doctoral
Research in Ergodic Theory and Dynamical Systems
遍历理论和动力系统研究
- 批准号:
410698-2011 - 财政年份:2012
- 资助金额:
$ 1.97万 - 项目类别:
Postgraduate Scholarships - Doctoral
Research in Ergodic Theory and Dynamical Systems
遍历理论和动力系统研究
- 批准号:
410698-2011 - 财政年份:2011
- 资助金额:
$ 1.97万 - 项目类别:
Postgraduate Scholarships - Doctoral
Research in geothermic theory and ergodic theory
地热理论和遍历理论研究
- 批准号:
393423-2010 - 财政年份:2010
- 资助金额:
$ 1.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Strongly approximately transitive group actions & ergodicity of randome walks
强烈近似传递性群动作
- 批准号:
400772-2010 - 财政年份:2010
- 资助金额:
$ 1.97万 - 项目类别:
University Undergraduate Student Research Awards
Abelian varieties and cryptography
阿贝尔簇和密码学
- 批准号:
367826-2008 - 财政年份:2008
- 资助金额:
$ 1.97万 - 项目类别:
University Undergraduate Student Research Awards
相似国自然基金
基于Sketch与统计推断的高性能与高可用网络测量框架研究
- 批准号:61802365
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
机器学习与优化天元数学交流项目
- 批准号:11826004
- 批准年份:2018
- 资助金额:29.0 万元
- 项目类别:数学天元基金项目
基于抽样的统计粗糙集模型及应用
- 批准号:61772536
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
海量文本数据下实体智能近似匹配的关键技术研究
- 批准号:61702346
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
面向大数据的知识表示、推理、在线学习理论及应用研究
- 批准号:U1435214
- 批准年份:2014
- 资助金额:150.0 万元
- 项目类别:联合基金项目
相似海外基金
Statistical mechanical approach to matrix and tensor estimation
矩阵和张量估计的统计机械方法
- 批准号:
22KJ1074 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Statistical mechanics of heuristic methods in multi-stage learning
多阶段学习中启发式方法的统计机制
- 批准号:
21K21310 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Statistical sequential analysis on Galton-Watson branching processes by stopping times based on information
基于信息的停止时间对 Galton-Watson 分支过程进行统计序列分析
- 批准号:
21K01422 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: New Perspectives on Deep Learning: Bridging Approximation, Statistical, and Algorithmic Theories
合作研究:深度学习的新视角:桥接近似、统计和算法理论
- 批准号:
2134077 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Collaborative Research: New Perspectives on Deep Learning: Bridging Approximation, Statistical, and Algorithmic Theories
合作研究:深度学习的新视角:桥接近似、统计和算法理论
- 批准号:
2134133 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant